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Abstract

We develop an empirical likelihood framework for testing return predictability in the condi-
tional mean and conditional quantiles. A unified chi-square limit theory is established across
a broad spectrum of predictor persistence, including stationary, mildly integrated, nearly in-
tegrated, unit-root, and mildly explosive cases. We provide two complementary approaches
to handle the unknown intercept: (i) a sample-splitting approach under relaxed regular-
ity conditions and (ii) a new two-stage method that improves efficiency and accommodates
quantile inference, where sample-splitting is infeasible. We examine the finite-sample bias of
the two-stage method, and propose a bias-correction scheme and gradually saturated weights
that improve performance under high persistence. Simulation evidence demonstrates that
our tests exhibit competitive size and power across persistence classes, with notable gains
in quantile predictability. An empirical application to the U.S. stock market shows mod-
est evidence of mean predictability, whereas quantile-based inference reveals stronger and

economically relevant predictability in the tails of the return distribution.
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1 Introduction

The predictability of asset returns has long been a central topic in financial economics, as it
bears directly on foundational questions of market efficiency, asset pricing, and portfolio choice.
At the core of these issues lies the behavior of the conditional distribution of financial returns,
encompassing not only the first moment but also higher-order characteristics such as tail risk
and asymmetry. Understanding how these distributional features relate to available information
provides a powerful lens through which key empirical puzzles in financial economics are explored,
such as the equity premium puzzle, excess volatility, and time-variation in expected returns.

While much of the literature has focused on the conditional mean of asset returns and its
predictability (see Pesaran and Timmermann, 1995; Dangl and Halling, 2012; Gu et al., 2020),
growing attention has been directed toward approaches that capture heterogeneity across the
conditional distribution, recognizing that predictive relationships may vary at extreme quantiles
where downside risk is important. Because mean regressions summarize average predictability
across all quantiles, they can obscure such variation and may not adequately capture predictabil-
ity in specific regions of the distribution, as discussed by Gonzalo and Pitarakis (2012). This
has motivated the use of quantile regressions, which provide a more complete view of return
predictability (see, among others, Koenker, 2005; Xiao, 2009; Lee, 2016; Fan and Lee, 2019; Cai
et al., 2023).

It is essential to recognize, however, that predictive regressions, whether focused on the
mean or other distributional features, face significant econometric challenges. One of the most
fundamental challenges is the dynamic nature of predictor variables, which may range from
strongly stationary to unit-root and even mildly explosive behavior. Greater persistence (i.e.,
movement toward nonstationarity) introduces severe complications for standard estimation and
inference methods, including biased coefficients and nonstandard limiting distributions; see, for
example, Phillips (2015).

In practice, the temporal properties of predictors are typically unknown a priori, making
it difficult to select a method suited to the true data-generating process. This uncertainty
highlights the importance of developing unified inference procedures that remain valid across
different persistence regimes. Several approaches have been proposed to tackle this challenge,
which can broadly be divided into three strands of research. The first method includes the Bon-
ferroni t-test by Cavanagh et al. (2009) and the Bonferroni Q-test by Campbell and Yogo (2006)
for mean predictability, along with the quantile extension developed by Maynard et al. (2024).
Despite their innovative treatment of the problem, Bonferroni methods face some limitations,
including nonstandard asymptotics and joint normality assumptions on the error terms.

The second strand builds on the IVX methodology introduced by Magdalinos and Phillips

(2009). This seminal approach involves filtering the predictor to construct an instrumental



variable with a controlled degree of persistence, which is then used in the predictive regres-
sion of interest. A key advantage of this method is that the resulting test statistic follows a
standard chi-squared limiting distribution, regardless of the persistence characteristics of the
original predictor. Several notable contributions have built upon this framework. For example,
in the context of mean predictability, Kostakis et al. (2015) apply the IVX methodology to ex-
amine whether stock market returns are predictable by lagged financial variables. Phillips and
Lee (2016) explore inference under local explosiveness and mildly explosive roots, Demetrescu
and Rodrigues (2022) introduce a bias-corrected IVX estimator, analogous to the finite-sample
correction by Amihud and Hurvich (2004), Demetrescu et al. (2023) propose refinements for
greater robustness, and Yang et al. (2020) develop the IVX-AR test to account for serial cor-
relation and heteroskedasticity in the regression errors. On the other hand, Lee (2016) and
Fan and Lee (2019) extend the IVX methodology to quantile predictability, addressing an im-
portant and previously underdeveloped area. The IVX approach offers valuable insights for
addressing persistence in predictive regressions. Its implementation, however, involves selection
of a tuning parameter used to construct instruments, and the convergence rates depends on
how the instruments are formed. Lee (2016) provides a practical rule for choosing the tuning
parameter in the context of quantile predictive regressions, although the precise impact of this
choice on test performance remains an open question. As noted by Yang et al. (2021), the IVX
framework typically assumes a zero intercept in the autoregression, which may limit flexibility
in some applications.

The third strand of research applies the empirical likelihood (EL) method to predictive
regression settings. Originally introduced by Owen (1988, 1990), the method offers several de-
sirable advantages. It is nonparametric, achieves fast convergence rates, does not require the
choice of tuning parameters, and delivers test statistics with a standard chi-squared limiting dis-
tribution (Wilks’ theorem) regardless of the persistence level of the predictor. These properties
make it attractive for predictive regressions.

Building on these advantages, the EL approach was first applied successfully in predictive
mean settings by Zhu et al. (2014) and has since been extended to accommodate more com-
plex features. For example, Li et al. (2017) allow for autocorrelated errors, Liu et al. (2019)
incorporate first differences of the predictor, and Yang et al. (2021) permit lagged dependent
variables. Nevertheless, despite these advances, existing EL methods have not been extended to
accommodate mildly integrated or mildly explosive predictors, which are particularly relevant
in many applications in economics and finance; see, for example, Phillips et al. (2011). This
paper aims to fill this gap by extending the EL framework to predictive regressions that accom-
modate mildly integrated and mildly explosive predictors and relax regularity conditions, while
also incorporating distributional characteristics beyond the mean, in particular, quantile-based

inference.



In applying the EL method, an important practical issue is the presence of an unknown
intercept in the predictive regression. One way to address this is through the sample-splitting
(large-lag differencing) approach proposed by Zhu et al. (2014), which facilitates straightforward
elimination of the intercept. We revisit and extend this approach by substantially relaxing the
restrictive regularity conditions commonly imposed in the existing EL literature such as i.i.d.
errors, and by accommodating additional persistence regimes for the predictor. However, in
mean predictive regression settings, sample splitting sacrifices efficiency because the effective
sample size is halved, and in the context of quantile predictive regressions, it is not applicable,
since the differenced score no longer yields pivotal EL constraints. To complement sample
splitting, we propose a new two-stage procedure for mean predictive regressions, motivated by
Cai and Wang (2014), and also apply it to quantile settings (where sample splitting is infeasible).
Our method retains the full sample by first estimating the intercept and then applying the EL
test to the intercept-adjusted series. While effective, this procedure can suffer from small-sample
distortions, especially under high persistence. We address these challenges by incorporating
gradually saturated, hyperbolic tangent-type, weight functions into the estimating equations to
stabilize the EL constraint and reduce higher-order bias. Simulation evidence shows that the
proposed EL procedures deliver competitive size and power across persistence regimes, with
notable gains in quantile predictability.

This paper makes several contributions to the existing literature. First, we develop an EL
framework that accommodates a wide spectrum of predictor persistence and delivers a unified
chi-square limiting theory, and apply it to both mean and quantile-based settings. Second, we
develop two complementary approaches for handling unknown intercepts: a sample-splitting
method under relaxed conditions, and a new two-stage procedure that improves efficiency and
enables quantile inference. Third, we propose practical remedies for finite sample bias: Bartlett-
type bias correction and gradually saturated weights, which enhance finite-sample performance
under strong persistence. These contributions provide robust inference tools for predictive
regressions under realistic persistence scenarios.

While our contributions advance the econometric literature, they also address issues of prac-
tical significance in finance and risk management. Testing predictability in a quantile setting is
particularly important and attractive for several reasons. From a financial perspective, investors’
decisions depend on more than just the mean and variance of returns; higher-order moments
and tail behavior play a critical role in portfolio choice and risk management (see Harvey and
Siddique, 2000; Dittmar, 2002; Cenesizoglu and Timmermann, 2012). From an econometric
perspective, quantile regressions are well suited for skewed or heavy-tailed distributions, a com-
mon feature of financial data, and are widely used in risk management applications, such as
Value-at-Risk estimation. Moreover, predictive quantile regressions avoid to a large extent the

theoretical challenges associated with mean regressions, such as order-imbalance issues when



regressors are highly persistent; see, Phillips (2015).

An empirical application to U.S. equity returns demonstrates the practical utility of the
proposed framework in uncovering informative dynamics of predictability. We find that mean
predictability is modest and concentrated in a small set of economically relevant variables, such
as inflation and short-term interest rates, consistent with the mixed evidence reported in the
literature on mean predictability. By contrast, quantile-based inference reveals substantially
richer dynamics across the return distribution. In particular, predictors related to interest rates
and inflation exhibit stronger signals in the lower tails, while the default yield spread dominates
the upper tail. These results highlight the value of moving beyond mean-based approaches to
capture distributional features that are relevant for portfolio allocation, risk management, and
policy evaluation.

The rest of the paper is organized as follows. Sections 2 and 3 present the proposed methods
and asymptotic theory for mean and quantile predictability, respectively. Section 4 studies finite-
sample behavior and discusses practical remedies, including the choice of weights and Bartlett-
type bias correction. Sections 5 and 6 report simulation results and the empirical application,
respectively, and Section 7 concludes. All proofs are in the Appendix; the Internet Appendix
contains further simulation results. We take all stochastic processes considered in this paper
equipped with the same probability measure P. As for notations, we denote by =, S—t>, ,
and 2 weak convergence in the Skorohod space D|0, 1], stable convergence in law, convergence
in distribution, and convergence in probability, respectively. The term stationarity means strict
stationarity, rather than weak stationarity. The mathematical expression for divergence in

probability; i.e., X bt ast — 00, is understood to mean P(X; > r) — 1 for every r > 0.

2 Empirical Likelihood for Mean Predictability

We study a widely used predictive regression model for the conditional mean; see Phillips (2015)
and references therein. To fix ideas, let Y; denote the excess return on a broad market portfolio,
and let X;_1 denote a lagged predictor such as the dividend-price ratio, earnings yield, or an
interest-rate variable. More generally, the setup can be applied to any scalar response and
possibly persistent predictor in a predictive regression.

The data-generating process for {(Yz, Xt)}icz+ is given by

Y, = a+B8X41+ U, (1)
Xt = 04 pXi1 tey, (2)

where U; and e; are error terms satisfying regularity conditions that are specified shortly. The

slope coefficient 8 captures the predictive content of X; 1 for Y;. The main object of interest



is to test the null hypothesis of no mean predictability
Hy:p = 0. (3)

In this context, we develop an empirical likelihood (EL) approach that delivers statistical infer-
ence on § under a wide range of persistence scenarios for the predictor X;. In what follows, we
first outline the EL formulation for mean regressions and then present its asymptotic properties
and implementation details.

We make the following assumptions about Uy and e;, which are sufficiently general to ac-
commodate a wide range of empirical features commonly observed in practice. The proposed
characterization allows for correlation between the error terms U; and &4, thereby accommodat-
ing the potential embedded endogeneity in predictive regressions (Stambaugh, 1999; Campbell
and Yogo, 2006).

Assumption 1. The error terms (U, &) are characterized as follows:
Uy =¢Vi+2z, and & =1V, (4)

where (z¢, Vi) is a martingale difference with respect to the natural filtration G;—1 = o({zs, Vs; s <
t —1}) and satisfies sup, E(|Vi|*T7 4 |2*T9) < oo for some ¢ > 0. Moreover, &; is either
conditionally homoscedastic, or conditionally heteroscedastic with conditional variance ¢ that
is stationary and satisfies B(s; %) < oo. The process (2, Vi) is a-mizing with rate a(f) < Cy*

for some v € (0,1) and C > 0.

Remark 1. The above setup is notably weaker than what is commonly adopted in the predictive
regressions literature along several dimensions. First, we substantially relax the i.i.d. condition
on the error terms (U, Vi) often postulated in the empirical likelihood framework (see Cai
et al., 2015; Li et al., 2017; Liu et al., 2019; Yang et al., 2021). Second, the intercept # in (2) is
allowed to be non-zero in the model. Lastly, we accommodate conditional heteroscedasticity in
the autoregressive error &, following the conditions in Lee (2018), which are satisfied by many
GARCH-type processes. We note for later reference that the a-mixing assumption for (z;, V;)
is only needed in Theorem 2. The required mixing rate can be relaxed to the polynomial rate
a(l) < Cl~" with exponent k > (2+ q)/(2+ 2q) without affecting the asymptotic theory of the

paper; see the proofs for details.
Assumption 2. Further to Assumption 1, with respect to Gi_1, the error term Uy is either

(i) Conditionally homoscedastic:

i.e. E(U? | Gi—1) = ofy < oo,



or

(i) Conditionally heteroscedastic:
i.e. E(U? | Gi—1) = of
where 02 is Gy_1-measurable and is finite for allt, and, as T — co satisfies

1

T D E(U? | Gi1) B o”, (5)

t=1

Remark 2. Assumption 2(ii) is mild and flexible and does not restrict the conditional variance
of Uy to be stationary. Similar conditions appear in Assumption A2 of Cai et al. (2023). See also
Park (2002) for related discussions. The assumption accommodates various forms of nonstation-
arity, such as processes with structural breaks in the volatility. In many financial applications,
however, conditional volatility exhibits strong persistence and may behave as nearly integrated,
as documented by Jacquier et al. (1994). Such cases typically violate Assumption 2(ii). To
address this, Choi et al. (2016) propose a transformation that ensures a constant conditional
variance as in (5). Practitioners seeking to handle nearly integrated volatility may find their

procedure useful.

To capture a broad range of predictor persistence, we follow the standard practice of pa-

rameterizing the autoregressive coefficient in equation (2) as p = pr, and let

C

pPT = 1+ﬁ7

where ¢ and a > 0 are some fixed constants; see Phillips (2015) and references therein. The
time-series properties of X; are determined by the pair (¢,a). In this paper, we consider the

following five cases:
Cl :|14+¢ <1anda=0; X;is stationary;
C2 :c<0andae€(0,1); X;is mildly integrated;
C3 : ¢#0and a =1; X; is nearly integrated;
C4 : ¢=0; X;is integrated,;
C5:c>0andac€(0,1); X;is mildly explosive;

These cases encompass a wide range of potential regimes for X; encountered in practice. No-

tably, within the context of EL methods, existing studies have not covered the mildly integrated



C2 and mildly explosive C5 scenarios. By contrast, the IVX literature accommodates these
cases; see, for example, Phillips and Lee (2013). Together with our relaxed error assumptions
(Assumptions 1 and 2), this broadens the scope of EL-based inference for predictive regressions
while retaining its practical advantages, such as fast convergence rates, no tuning parameters,

and ease of implementation.

2.1 When «a is Known

We first consider the case where the intercept a = ag is known a priori. This assump-
tion simplifies the EL formulation and helps illustrate the core idea underlying the method.
Moreover, presenting results under this scenario provides a benchmark for the small-sample
performance of EL tests, as it reflects the advantage that can be gained when the intercept is
known or estimated with high precision.

Given the predictive regression (1), consider the following weighted estimating equation:

T
> (Vi—ao— X 1) w(Xi) =0,
t=1
where w(+) is a measurable weight function. The weight function is introduced to accommodate
the potential nonstationarity of X;. Under nonstationarity, X; may diverge in probability, which
can invalidate standard EL limit theory unless appropriately weighted; see Ling (2005) and Zhu
et al. (2014).

Remark 3. The specification of w(-) is of both theoretical and practical importance. Later
in Section 4, we report some new findings that, to our knowledge, have not been previously
documented in the EL-based predictive regressions literature. A set of sufficient conditions
ensuring the validity of our limit theory is that the weight function is continuous, uniformly
bounded, and satisfies the saturation condition w(x)? — 1 as |z| — co. Hereafter, we suppose

that the weight function we consider satisfies these conditions.
Some examples of such weight functions include

wi(z) = \/% wo(x) = ——— . ws(z) = tanh(z/b), (6)

for b > 0. In the literature, the widely adopted practice has been to employ wi (z) (see, inter alia,
Zhu et al., 2014; Liu et al., 2019; Yang et al., 2021), which we will refer to as the conventional
weight hereafter. In Section 4, we discuss finite-sample issues that may arise in this context,
and propose alternative choices of weights, explaining how the issues can be alleviated, while

preserving the validity of the asymptotic theory.



The empirical likelihood method proceeds as follows. For t = 1,2,...,T, we define
Zy(B) = [Yi — a0 — BXi1]w (Xi—1) .

The profile empirical likelihood function for § is given by:

T

T T
LT (/8) = sup { H (Tﬂ't) LTt 2 O fOI‘ all t, Zﬂ't = 1, Zﬂ'tZt(/B) = 0}7 (7)
t=1

t=1 t=1

where the supremum is taken over the 7’s. Accordingly, (7) defines a nonparametric analogue
of the likelihood ratio; see Owen (1988, 1990). Applying the method of Lagrange multipliers to

incorporate these constraints yields the empirical likelihood ratio statistic:

T
tr(B) = —2log L (8) = 2 log {1+ A% (8)},

t=1
where the multiplier A = A\(/3) satisfies
T
A0
— 1+ A2 (B) )

Theorem 1. Suppose that the data is generated according to the process in equations (1)-(2),
with the predictive variable belonging to either class C1, C2, C3, C4, or C5. Suppose also that
Assumption 1 and either Assumption 2-(i) or 2-(ii) are satisfied. Then,

er(Bo) - X3

as T — oo, where By denotes the true value of 5.

The theorem establishes the limit theory for the test statistic uniformly across cases C1—C5.
As a consequence, we would reject the hypothesis Hy : 5 = [y at level g if {p(8y) > X%,l— 2°

Furthermore, an empirical likelihood confidence set for # can be obtained.

2.2 When « is Unknown: (i) Sample Splitting

Since the intercept « is typically unknown in practice, the conventional approach in the
EL literature is to eliminate it via large-lag differencing (i.e. sample-splitting), as originally
suggested by Zhu et al. (2014). This method partitions the sample and constructs differenced
observations using a sufficiently large lag, thereby removing the intercept from the regression.
While straightforward to implement, its main drawback is that it sacrifices efficiency because the
effective sample size is halved. Nevertheless, sample-splitting offers two advantages: it mitigates

the degree of nonstationarity in X; through differencing and avoids the need to estimate the



intercept. Below we extend the sample-splitting method by (i) accommodating mildly integrated
and mildly explosive predictors and (ii) substantially relaxing restrictive i.i.d. error assumptions.

In the next subsection, Section 2.3, we propose a new two-stage method as a complementary
approach that exploits the full sample. Both procedures are useful in their own right and are
studied within the same unified asymptotic EL framework.

Let m = [T/2], where |-| denotes the floor function, and define
Yt* =Yim — Y, Xik = Xipm — Xy, and Ut* =Upm — Ug

for t = 1,...,m, hence sample-splitting. By construction, the intercept « cancels out and is
eliminated from the regression specification. Sample splitting preserves the property that under
nonstationarity X;* diverges in probability when X; is, whereas simple first differencing need
not. Consequently, the empirical likelihood procedure via weighting can be carried over to the
differenced regression.

The data generating process can be written in terms of the differenced variables as
Y/ =BX 1+ U, and X[ =pX; +e (8)

for t = 1,...,m, and €f = €44y — €. In Theorem 2 below, we show that Wilks’ theorem
established in Theorem 1 continues to hold regardless of the degree of persistence of X;.

The profile empirical likelihood function for 3 is given by:

m

m m
Ly (B) = sup{H(mﬂt) cm >0, >0, Zﬂ't =1, Ztht* (B) = 0},
t=1 t=1 t=1
where Z;(8) = [Y;" — BX] 1Jw(X}_ ). For example, if the conventional weight w(-) in (6) is
used, then w(X; ;) = X; ;/4/1+ Xt*l21- As before, using the method of Lagrange multipliers

we have

lr(8) = —2log Ly (8) = 2y _log {1+ AZ ()},

t=1

where A = \(f3) satisfies
/AL
— 1+ MZf (B)
Theorem 2. Suppose that the data is generated according to the process in equations (1)-(2),

with the predictive variable belonging to either class C1, C2, C3, C4, or C5. Suppose also that
Assumption 1 and either Assumption 2-(i) or 2-(ii) are satisfied. Then,

G(Bo) -5 3



as T — oo, where By denotes the true value of .

As a consequence of Theorem 2, we would reject the hypothesis Hy : § = By at level p if

05 (Bo) > X%,l— ,- Furthermore, an empirical likelihood confidence set for 8 can be obtained.

Remark 4. The sample splitting approach avoids estimating the intercept and is less sensitive

to finite-sample distortions owing to its mitigated effect of predictor nonstationarity.

2.3 When « is Unknown: (ii) A Two-Stage Approach

We propose a new two-stage procedure as a complementary approach to sample splitting
for handling the unknown intercept, which has not been explored in the EL-based predictive
regressions literature to our knowledge. While sample splitting effectively halves the sample
and may entail an efficiency loss, the proposed two-stage approach retains the full sample for
inference and can yield higher efficiency.

The procedure first estimates the intercept « in the style of Cai and Wang (2014). Specifi-
cally, in the first step, we run a first order autoregression for X; to obtain the residuals &. In
the second step, in view of equations (1)—(4), we regress Y; on & and X;_; to estimate a in
(1) via OLS. We denote the resulting estimate by a. Consequently, we redefine the dependent
variable as V; = Y} — a, and apply the empirical likelihood method directly to the intercept-
adjusted observations Y;. Cai and Wang (2014) imply that & is v/T-consistent. Therefore, a
non-negligible asymptotic term may arise in the limit under the /7T-scaling. We propose a
solution to address the issue by employing the centered weight in the two-stage approach:

w(zr) = w(x) —

S w(Xe), (9)

s=1

Nl =

in order to let the error term vanish. The centered weight function remains uniformly bounded,
and the sample average of (w°(X;_1))? admits a finite probability limit. These are sufficient for

the limit theory to hold; see the proof for details. We let
Zy(B) = [Yi — BXi1] - w(Xeo1), (10)

and the profile empirical likelihood for S is given by

T T T
L (8) = sup{H(Tm M 20, 20, > m=1, Y mZ(8) = 0}.
The corresponding empirical likelihood ratio statistic is then
o~ ~ T ~ o~
Ir(8) = —2108 Ly (8) = 2" log(1+3Z(8)), (11)
t=1

10



where \ = X(/B) is the Lagrange multiplier satisfying:

T ~
Z,
> 4B, (12)
t=1 1 + /\Zt(ﬁ)
The intercept « is treated as a nuisance parameter. The following theorem establishes that the

two-stage EL statistic satisfies Wilks’ theorem uniformly across cases C1—C5.

Theorem 3. Suppose that the data is generated according to the process in equations (1)-(2),
with the predictive variable belonging to either class C1, C2, C3, C4, or C5. Suppose also that
Assumption 1 and either Assumption 2-(i) or 2-(ii) are satisfied. Then,

ir(Bo) - X3

as T — oo, where By denotes the true value of .

Clearly, Theorem 3 implies that we would reject the hypothesis Hy : § = Bo at level p if

ZT(ﬁo) > X%,l— ,- Furthermore, an empirical likelihood confidence set for 8 can be obtained.

Remark 5. The two-stage method uses the full sample for inference, thereby circumventing the
efficiency loss in sample splitting. Section 4 discusses finite-sample issues that may arise in the

two-stage method and proposes remedies via a bias correction and alternative weight choices.

3 Empirical Likelihood for Quantile Predictability

We now extend the EL framework to predictive quantile regressions. Unlike the mean re-
gression setting considered in Section 2, quantile regressions allow predictive relationships to
vary across different parts of the conditional distribution, providing a richer characterization of
return dynamics and tail risk; see, for example, Gonzalo and Pitarakis (2012). While empirical
likelihood has been widely applied to mean predictive regressions, its adaptation to quantile
settings poses additional challenges because the estimating equations differ and involve non-
smooth, indicator-based, score functions. In what follows, we outline the EL formulation for
quantile regressions, establish its asymptotic properties under the persistence scenarios intro-
duced earlier, and discuss implementation details.

For a given quantile level 7 € (0,1), let Qy,(7 | Gi—1) denote the conditional 7-quantile of
Y; given G;—1 = o({zs, Vs; s <t —1}). Following Lee (2016), Fan and Lee (2019), and Cai et al.

(2023), we consider the specification:

Qv, (7| Gi1) = ar + B X1, (13)

where X;_; is the lagged predictor, with its data generating process defined in (2). The quantile

11



innovation is defined as

Uir =Y — Qv, (7 | Gi—1). (14)

A key feature of this model is that the coefficients «; and S, vary across quantile levels, allowing
for a more informative assessment of predictor effects and tail risk. This flexibility is particularly
important for capturing heterogeneity in predictive relationships, especially in the tails. The

object of interest is to test the null hypothesis of no quantile predictability:
Hy:6,=0

for some 7, which is similar to (3) for the mean model. As in the mean regression setting,
we distinguish between two scenarios for the intercept «;: known and unknown. Section 3.1
presents the EL formulation when «. is known, which serves as a benchmark and illustrates
the core idea of the method. When «; is unknown, large-lag differencing alters the conditional
quantile structure, and the resulting EL constraints become non-pivotal, in the sense that the
variance of the quantile score depends on an unknown conditional joint distribution. Conse-
quently, the sample-splitting approach is not applicable in this framework; see Section 3.2 for
details. Instead, we adopt the two-stage procedure introduced earlier for mean regressions in
the quantile setting. This is the main reason why we propose the two-stage estimation proce-
dure for mean regressions in Section 2.3. We continue to accommodate the persistence regimes
described in cases C1—C5. We also maintain Assumption 1 to keep the exposition focused and

the framework unified, although the quantile results only rely on the relevant parts.

3.1 When o, is Known

We first consider the case where the intercept oy = oo is known a priori. As before, this
scenario serves as a benchmark, illustrating the core idea of the EL approach and representing
the potential size and power the test can achieve when the intercept is known or estimated with
high precision.

Given the predictive model specified in (13), similar to the empirical likelihood approach
for quantile regression as in Otsu (2008) and Wang and Zhu (2011), we consider the following

weighted estimating equation:

T
Z gt,’r(ﬂ’r) - O,
t=1

where & (8r) = Y- (Vs — arp — B X—1)w(Xi—1) and ¢, (u) = 7 — 1(u < 0) is the quantile

score, which is a generalized derivative of the check function ¥(u) = u(7 — 1(u < 0)). Then, the

12



profile empirical likelihood function for 3, is

T T T
LT,T(/BT) = Sup { H (Tﬂ't) Dy, 20, Zﬂ't =1, Zﬂ-tgt;r(ﬂ’r) = 0}
t=1 t=1 t=1
Consequently, the empirical likelihood ratio statistic is given by:
T
lrr(Br) = —2log L7 (B:) = 2 log{1 + A&+ (57)},
t=1

where the multiplier A\; = A-(f;) satisfies

T

Z &,T(B‘r) —0.

= 1+ )\Tgt,T(BT)
Remark 6. By definition, the quantile innovation Uy » in (14) satisfies P(U;» < 0|Gi—1) = 7.
Hence, ¢, (Uy ;) =7 — 1{U; < 0} obeys

E[¢r(Usr)|Gi-1] =0, and E [ (Upr)?|Gi—1] = 7(1 — 7),

so that ¢, (U; ;) forms a martingale difference sequence with respect to G,_1. Therefore, we can
show that the EL constraints remain valid, and the EL procedure developed for mean regressions

extends naturally to the quantile setting.

Theorem 4. Suppose the data is generated according to the process in equations (13) and (2),
and the predictive variable belongs to either class C1, C2, C3, C4, or C5. Suppose also that
Assumption 1 holds. Then, for each T € (0,1) we have

gT,T(BT,O) i> X%

as T' — oo, where B denotes the true value of 3.

From Theorem 4, one can see that for each 7 € (0,1) we would reject the hypothesis
Hy : B = Brp at level g if b7, (Br0) > X%,l— o Furthermore, an empirical likelihood confidence

set for B, can be obtained.

3.2 When «, is Unknown

We now turn to the case where the intercept o, is unknown. As discussed earlier, the
conventional sample-splitting approach used in the EL literature for mean regressions is not
directly applicable in the quantile setting. This phenomenon is similar to the case that the
profile least squares method for semiparametric mean regressions is not directly applicable

to semiparametric quantile models; see, for example, Cai and Xiao (2012) for details. What
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happens is that large-lag differencing modifies the conditional quantile structure and leads to
estimating equations whose variance depends on an unknown conditional joint distribution. To
see this, as before, write m = |T'/2] and define Y;* = Y4, — YV} and X} = Xyy,, — X; for
t=1,...,m. Let Uy, = Upymr— U, where Uy ; := Y; — Qy, (7 | Gt—1). The conditional second
moment of the score E(¢p;(U;,)?|Gi—1) depends on P(Uf, < 0|G;—1), where

P (UZT < Olgt_1) = // H{u < u} dFUt+m,T,Ut,T\Qt_1(“/v“)v

and Fy, wmorUtr|Geot is the conditional joint distribution function of Uit » and Ui ,. Thus,
the variance of the differenced score depends on the unknown conditional joint distribution.
Furthermore, ¢, (U, ) is no longer a martingale difference. The resulting EL constraint is hence
not pivotal, implying that sample-splitting cannot be applied in the quantile framework.
Therefore, we instead adapt the two-stage procedure introduced earlier for mean regressions
to the quantile setting. Due to the presence of quantile score, we additionally assume the
following local smoothness condition around the 7-th conditional quantile. Along with weight
centering, the assumption keeps the EL statistic pivotal, yielding the desired limit result. The
condition is satisfied by some regime-switching models and time-varying monotone distortions.
Similar positivity and Lipschitz-type conditions on the conditional density at the quantile are
assumed in the quantile regression literature; see, for example, Assumption 3.1 of Otsu (2008)

and Condition S.2 of Belloni et al. (2019).

Assumption 3. There exist some constants f+(0) € (0,00), Ly < 0o andeg > 0 such that for all
t, the conditional density f;+(0|Gi—1) = f-(0) € (0,00), we have |fr+(u | Gi—1) — fr.+(0|Gi—1)| <
L:|u| for all |u] < eo.

Now, we consider the quantile estimator as in Koenker and Bassett (1978) and Lee (2016):

(&T, ﬁ7>/ = argminZ'ﬁT (Y —ar — - X4-1),

and define
Er(Br) = e (Ve — G — Br Xy 1) (X 1),

where w®(-) is the centered weight defined in (9) and ¥(u) = u(r — 1(u < 0)). The profile

empirical likelihood function for 3, is then
T

T T
Lr+(8:) = sup { H (Tme) : m,...,mp >0, Zm =1, Zﬂtgt,T(BT) = O}.
=1 t=1

t=1
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Consequently, the empirical likelihood ratio statistic is given by:

T
U1+ (Br) = —2log L+ (B;) = 2> log{1l+ A&+ (B-)},

t=1
where the multiplier A\; = A-(5;) satisfies

T ~

Z ft,‘r&ﬁ‘r) —0. (15)
t=1 I+ )‘Tft,T(ﬂT)

Theorem 5. Suppose the data is generated according to the process in equations (13) and (2),

and the predictive variable belongs to either class C1, C2, C3, C4, or C5. Suppose also that

Assumption 1 and 3 hold. Then, for each T € (0,1) we have

2JT,T(/BT,O) i> X%

as T — oo, where B denotes the true value of 3.

As a consequence of Theorem 5, for each 7 € (0, 1) we would reject the hypothesis Hy : 8, =
Bro at level g if ZT,T (Br0) > X%,l— o Furthermore, an empirical likelihood confidence set for 3.

can be obtained.

4 Bias Correction and Weight Choices

This section documents a potential finite-sample bias in the proposed two-stage EL method.
We explain why the bias can be particularly pronounced when the regressor is highly persistent.
As we show below, this is so even though EL ratio statistic admits the Wilks-type chi-squared
limit as in the previous sections. The Taylor expansion of (12) (equivalently, in the quantile

case, (15)) yields

1 & 1 <& 1 & 1 <&
0==-SN"Z, - 2=S"Z2242_N"Z3_N3_N"Z44....
PR PILAR PYL A P

=:¢
Since A = O,(T~1/2), it follows that
T 7 T 7
N\ = %Zt:lZﬁ ¢ _ %Zt:lzt +0 <1>
- T 7 T 2 T - P :
o1 Zi T L T 4P T
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Table 1. A simulation result for two-stage EL
and the conventional weight X;_1/4/1 + Xf_1

¢ saturation skewness kurtosis ¢/T

-50 0.088 -0.0125 3.506  0.007
-20 0.240 -0.169 4.278  0.009
0 0.968 7.900 93.431 0.104
2 0.968 7.880 91.935 0.101

By Taylor expansion to log(1 + AZ;) in (11), it follows that

i B SR
r(po) = AN Zi-NY B+ > 2 =5 Y B+
t=1 t=1 =1

t=1
~\ 2
LZTZ VA
= (fztifzﬁ) + fr(C) + 0p(1), (16)

where fp(() represents the influence of higher-order terms involving the third and fourth mo-
ments. Equation (16) delivers the chi-squared limit under standard regularity conditions, hence
our asymptotic theorems in the previous sections are valid. However, in finite samples the
higher-order terms may be non-negligible, leading to size distortions when the distribution of

Z exhibits pronounced skewness and kurtosis.

4.1 Bartlett Correction

Writing E(f7(¢)) = ¢/T, under restrictive conditions including the i.i.d. of Z;, DiCiccio
et al. (1991) and Liu and Chen (2010) show that the Bartlett constant ¢ satisfies

kurtosis(Z;) B skewness(Z;)?
2 3 '

q = (17)

The finite-sample bias can become pronounced when X; is highly persistent, because skewness
and kurtosis of Z; := Uwt(Xi—1) = Up - (w(Xy—1) — w(Xy—1)) may be large as we explain
below. As an example, Table 1 reports the sample skewness and kurtosis of Z when the
conventional weight wy(X;_1) = X;_1/(1 + X2 ,)'/? is used as usual. For illustration we also
report a saturation measure, defined as mean(|w(X;—1)| > 0.95). The data are generated from
the specification in equation (2), with § = 0 and ppr =1+ ¢/T.

Table 1 shows that in highly persistent regimes such as integrated (¢ = 0) or mildly explosive
(c = 2) predictors, skewness and kurtosis can be very large, leading to non-negligible values of
q/T. Consequently, the test statistic (16) is inflated and finite-sample size control becomes

unreliable. The mechanism is intuitive: if X, is highly persistent, whenever it drifts from
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zero it can remain large for long stretches. If the weight w(-) saturates quickly toward =+1,
then |w(X;_1)| remains close to 1 for extended periods, producing a distribution with long
runs near saturation and occasional extreme deviations when large shocks occur. If X; drifts
predominantly in one direction, the distribution becomes asymmetric (skewed), and long runs

near saturation combined with rare jumps inflate the fourth moment (kurtosis).

Remark 7. While this phenomenon is severe for the two-stage method in 2.3, it is not pro-
nounced under sample splitting since differencing mitigates the degree of persistence. Note that
when 0 # 0 and is large, the phenomenon can be exacerbated because X; is shifted away from
zero even initially, although a small deviation from 0 does not affect the overall performance
significantly, as expected from the saturation mechanism. Having a large value of non-zero ¢
also worsens the problem since U; = ¢V; 4 z;; an additional component driven by V; appears,
introduces additional dependence between the EL score and the persistent regressor, amplifying

size distortion. See Remark 9 in Section 5 for further discussion.

Since the Bartlett constant ¢ involves population quantities, it needs to be estimated for
a bias correction. However, under nonstationary and dependent scores, the estimation of ¢ is
not straightforward, and the true Bartlett constant may depend on the persistence of X; and
quantities beyond marginal skewness and kurtosis, so a fully reliable estimator is nontrivial. As

a heuristic, we propose to consider a “naive” Bartlett bias correction:

. kms(zt) SkgVESS(Z)Q ~ - 1 (Bo)
— _ d 7 naive ,_ “TAF0) 1

Here, we need to emphasize that the correction is a heuristic; our simulations (See Section 5)
indicate that (18) can lead to a modest improvement in finite-sample size. Developing a more
reliable estimator of the Bartlett constant in highly persistent regimes would be valuable, but we

leave it for future work. See Kitamura et al. (2004) and references therein for more discussions.

4.2 Weight Choice

Beyond the heuristic Bartlett bias correction we discussed above, we propose modifying
the weight function as a more direct and practically effective way to mitigate the finite-sample
distortions. The choice of w(-) directly shapes the higher-order moments of the EL score and
can substantially improve size control in highly persistent regimes. In particular, we find that
moving beyond the conventional weight functions commonly used in the EL literature yields
marked finite-sample improvements, which is confirmed by the simulation results in Section 5
(Table 3). The core idea is to let w(-) approach £1 less rapidly than the conventional weight, and
hence prevents the high moments of the EL score from being inflated. Figure 1 compares three

types of weight functions introduced in (6). The hyperbolic tangent weights ws(-) approach
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Figure 1. Plots of three weight functions

+1 more gradually than wi(-), which has served as the de facto conventional choice in the
literature; see, inter alia, Zhu et al. (2014), Yang et al. (2021). Consequently, they mitigate
clustering near saturation, reduce the inflated skewness and kurtosis, and may substantially
improve finite-sample behavior, while preserving the validity of the asymptotic theory.

Table 2 extends the results in Table 1, and reports the summary statistics of different weight
functions. They confirm the visual impression from Figure 1. In particular, conventional weights
exhibit high saturation and extreme kurtosis when the predictor is persistent, while hyperbolic
tangent weights substantially reduce such effects. For example, when ¢ = 0 (unit root), satu-
ration drops from 96.8% for the conventional weight (w1(-)) to 4% for the hyperbolic tangent
weight with b = 10 (i.e. ws3(+)). These findings motivate the use of hyperbolic tangent weights
as a practical alternative to the conventional choice. They mitigate the inflation of higher-order

moments that drive finite-sample bias in the two-stage EL when X is highly persistent.

Remark 8. The choice of the scale b in w(z) = tanh(z/b) is an interesting problem in practice.
Setting a larger b delays saturation and reduces the clustering of w(X;—_1) near £1 in highly per-
sistent regimes, thereby stabilizing the higher-order moments of the EL score. In finite samples,
a less rapidly saturating weight also preserves more variation in the centered weight w(X;_1).
However, taking b excessively large provides little additional benefit. In our sensitivity analysis
over b = 1,...,20 (available upon request), rejection probabilities reduce toward the nominal
level as b increases, but approach a plateau around b =~ 8-11 when X is highly persistent, e.g.
¢ = 0, after which the empirical sizes drift upward for larger b. Also, the improvement in power
becomes negligible once b reaches moderately large (e.g., b > 5). Intuitively, an excessively large
b makes tanh(x/b) nearly linear over a wide range of values, weakening the intended saturation-

based stabilization in the EL procedure. In the spirit of choosing tuning parameters for testing
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Table 2. Summary statistics of different weight functions

C Xt—l/ 1+Xt2—1 Xt_1/(1+ |Xt_1‘) tanh(Xt_l/IO)
Sat. Skew.  Kurt. Sat. Skew.  Kurt. Sat. Skew.  Kurt.
-50 0.088 -0.125  3.506 0.000 -0.136  3.428 0.000 -0.826  7.293
-20  0.240 -0.169  4.278 0.000 -0.137  4.408 0.000 -0.259 7.764
0 0.968 7.900 93.431 0.384 2.504 30.696 0.042 0.948 21.448

2 0968 7.880 91.935 0.724 2.554  30.607 0.073 1.371 29.493

Note: The table reports Monte Carlo averages of skewness (Skew.) and kurtosis (Kurt.) of the centered weight
Z: and those of saturation (Sat.; defined as P(Jw(X;_1)| > 0.95) under different persistence levels (¢). Summary
statistics are reported for three weight specifications. Data for X, are generated from the AR(1) specification in
equation (2), with pr = 14 ¢/T, § = 0, and innovations drawn from a standard normal distribution. Results are
based on 10,000 replications with sample size 7" = 250.

by balancing size control and power (see, for example Gao and Gijbels (2008)), we adopt b = 10,
the middle value of the observed plateau in the sensitivity analysis, as a default. We remark

that finite-sample results are very similar for nearby choices of b.

5 Simulation Study

This section examines the small-sample properties of the EL tests proposed in Sections
2 and 3. We specify the simulation setup and present evidence on the performance of the
proposed methods under different persistence regimes, comparing them to existing approaches.
To preserve space and maintain focus, we report here results only for both predictive mean
and quantile regressions under homoscedastic errors. The simulation setup and results for
heteroscedastic errors, which lead to qualitatively similar conclusions, are fully provided in the

supplementary material (Internet Appendix).

5.1 Simulation Setup

In this subsection, we use Monte Carlo simulations to investigate the finite sample behavior
of the proposed EL methods. For the mean regression experiments, we generate the data from
the process defined in equations (1) and (2), with & = 0.2, ¢ = 0.05, and ¢ € {-50, —20, 0, 2},
corresponding to stationary, local-to-unity, unit root, and mildly explosive predictors. The
autoregressive process in equation (2) is initialized at Xy = 0, following the usual convention.
The vector (z/,V/)" is drawn from a bivariate standard normal distribution, and we set g, = V4
and U; = ¢V, + 2 as defined in (4), with ¢ € {—0.5,—-0.20,0}.! For quantile regressions, we use

the same simulation setup for X;, ¢, and Uy, but generate Y; from

Yi=a; + 5 X4 1+ Ut,’ra

We also considered the cases of ¢ € {0.5,0.2}, but the results were qualitatively similar to those for ¢ €
{—0.5,—0.2}. Hence, we omit them for brevity here; those results are available upon request.
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Table 3. Finite-sample sizes for predictive mean regressions

o} c Conventional Conventional Hyperbolic tangent IvX
weights without weights with weights with
Bartlett correction Bartlett correction Bartlett correction

EL1 EL2 EL3 EL1 EL2 EL3 EL1 EL2 EL3
0 -50 0.0533 0.0531 0.0518 0.0520 0.0508 0.0513 0.0538 0.0532 0.0543 0.0536
-20 0.0513 0.0526 0.0519 0.0508 0.0515 0.0506 0.0524 0.0498 0.0523 0.0539
0 0.0494 0.0572 0.0804 0.0490 0.0558 0.0739 0.0483 0.0545 0.0463 0.0469
2 0.0491 0.0546 0.0994 0.0486 0.0526 0.0911 0.0486 0.0518 0.0512 0.0471
-0.2  -50 0.0525 0.0522 0.0526 0.0515 0.0506 0.0520 0.0526  0.0525 0.0545 0.0540
-20 0.0502 0.0521  0.0540 0.0496 0.0505 0.0527 0.0526 0.0512 0.0541 0.0530
0 0.0484 0.0556 0.0851 0.0480 0.0544 0.0785 0.0498 0.0537 0.0519 0.0460
2 0.0492 0.0521 0.1040 0.0485 0.0510 0.0945 0.0498 0.0511 0.0549 0.0473
-0.5  -50 0.0501 0.0516  0.0537 0.0490 0.0501 0.0516 0.0524 0.0518 0.0561 0.0516
-20 0.0502 0.0507 0.0576 0.0495 0.0494 0.0557 0.0543  0.0505 0.0579 0.0531
0 0.0492 0.0544 0.1068 0.0484 0.0530 0.1007 0.0546 0.0567 0.0766 0.0439
2 0.0495 0.0524 0.1353 0.0488 0.0513 0.1245 0.0551 0.0558 0.0780 0.0450

Note. The table reports the empirical size (i.e., the probability of incorrectly rejecting the null hypothesis
of no predictability). Results are shown for: EL1 (the EL method, where « is treated as known), EL2
(sample-splitting EL approach in Section 2.2), EL3 (the two-stage EL procedure using the projection method
in Section 2.3), and IVX (benchmark test of Kostakis et al. (2015) and Phillips and Lee (2016)). All tests are
conducted at the 5% nominal significance level. EL tests are conducted using either the conventional weight
function X;—1/(1+ Xf,l)l/z, with and without the Bartlett correction in Section 4.1, or the tanh function
tanh(X,_1/10) with Bartlett correction. The simulation design accounts for various levels of persistence in
the predictor X; through the localizing constant ¢ € {—50,—20,0,2}, and endogeneity through the innova-
tion correlation parameter ¢ € {—0.5,—0.2,0}. 6 = 0.05. Rejection probabilities are based on 10,000 Monte
Carlo simulations and sample size T' = 250. For detailed description of the simulation design, please see Section 5.

with Uy » = Uy —Qu, (7 | Gi—1), where Qu, (7 | Gi—1) denotes the conditional T-quantile of Uy. All
tests considered are conducted under the null hypothesis of no predictability at the 5% nominal
level. We report results for T = 250 based on 10,000 Monte Carlo replications. This design
allows us to assess the impact of persistence and endogeneity (captured by c and ¢, respectively)

on the size and power of the proposed EL tests.

5.2 Small-Sample Properties for Mean Predictability Tests

First, we evaluate the small-sample properties of the EL-based tests for mean predictability.
Table 3 and Figure 2 summarize the rejection probabilities and power plots of four tests: (i) the
EL procedure with the intercept « treated as known (EL1), (ii) the sample-splitting empirical
likelihood approach studied in Section 2.2 (EL2), (iii) the two-stage EL procedure (EL3) in
Section 2.3, where « is first estimated and removed using the consistent projection method in
the style of Cai and Wang (2014), and (iv) the IVX test of Kostakis et al. (2015) and Phillips
and Lee (2016), reported for benchmarking.

Several interesting conclusions emerge from these simulation results shown in Table 3. First,
the finite-sample remedies in Section 4, especially the hyperbolic tangent weighting, are highly

effective in improving size control in the highly persistent regimes relative to the conventional
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weighting used in the EL literature. When the endogeneity level ¢ is mild, at the 5% nominal
level, size is overall well calibrated for all procedures after finite-sample remedies. For EL3,
this reflects the EL constraint being well behaved and the intercept being estimated precisely
enough in the two-stage approach, so that the resulting score has near-zero mean under the null.
In the stationary (¢ = —50) and local-to-unity (¢ = —20) cases, the power of EL3 is also close
to the known-intercept upper bound (EL1), indicating that the full-sample two-stage procedure
preserves most of the efficiency of the oracle test. The sample-splitting approach (EL2) also
performs well and is correctly sized across all persistent levels. However, as expected, it is less
powerful because splitting sacrifices information and effective sample size. Relative to IVX, EL3
is typically competitive. In the stationary and local-to-unity cases, the two-stage power curve
rises at nearly the same rate as EL1 and often sits above IVX, especially near the null, where
local alternatives are weak.

In the unit-root case (¢ = 0), the two-stage procedure remains competitive in power relative
to IVX when endogeneity is low, and its curve converges to one slightly faster than IVX for
values of 5 close to the null. Nevertheless, the gap between EL3 and EL1 becomes more visible,
reflecting the impact of estimating «. For mildly explosive predictors (¢ = 2), the IVX curve
tends to converge slightly faster than the two-stage EL, although the difference is somewhat

marginal.

Remark 9. Under strong endogeneity (¢ = —0.5), EL3 is mildly oversized when the predictor is
highly persistent, even with the gradually saturating hyperbolic tangent weights. This behavior
is expected and is consistent with the construction of EL3: our two-stage adjustment removes the
intercept but does not purge the innovation-driven component in the regression error, as noted
in Remark 7. When ¢ # 0, the EL score in (10) inherits the influence of the term ¢Vi(= ¢z;),
which is correlated with the centered weight. This correlation can lead to stronger dependence
and heavier tails in the moment condition, inflating the finite-sample rejection probability.

As a remedy for this mild distortion, we consider two approaches and conduct additional
diagnostic simulations. First, an “oracle purging” that removes ¢Vi(= ¢e;) using the true
innovation employs the residual Y; — a — <;~55t in the EL score. This eliminates the size distor-
tion across persistence classes, confirming that the remaining over-rejection is driven by the
innovation-correlated component. Second, a “feasible purging” based on the estimated innova-
tion can be proposed, where Y; —a — QNSag is used as the residual. This ameliorates the over-sizing
by construction, but may introduce size distortions in stationary or near-stationary regimes due
to estimation error in the autoregressive coefficient p (which vanishes as the sample size grows,
but slowly than the highly persistent cases). These simulation results are reported in the In-
ternet Appendix (Section TA2). Developing a feasible purging scheme that further reduces this

estimation-error effect in finite samples is left for future research.
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Figure 2. Finite-sample size and power plots for mean predictability tests with homoscedastic
errors and tanh-based weight

Note. The figure summarizes rejection probabilities (y-axis) for tests of the null hypothesis of no predictive
ability in the mean regression model (1). Results are shown for: EL1 (the EL method, where « is treated as
known; Section 2.1), EL2 (sample-splitting EL approach in Section 2.2), EL3 (the two-stage EL procedure using
the projection method in Section 2.3, and IVX (benchmark test of Kostakis et al. (2015) and Phillips and Lee
(2016)). All EL tests are conducted using the hyperbolic tangent weight function w(X¢—1) = tanh(X;_1/10)
and applying the Bartlett correction. The x-axis represents true values of the slope coefficient 3, with g = 0
corresponding to empirical size. The red dashed line marks the 5% nominal level. Rejection probabilities are
based on 10,000 Monte Carlo simulations. Results are reported for sample size T' = 250, 6 = 0.05, innovation
correlation parameter ¢ € {—0.5,—0.2,0}, and localizing constant ¢ € {—50, —20,0,2}. Results under different
settings including heteroscedastic errors are similar, and can be found in the Internet Appendix.

Overall, the empirical likelihood procedures exhibit competitive small-sample performance
for mean predictability across the persistence regimes considered. In stationary and local-to-
unity cases, both procedures deliver accurate size control, while EL3 achieves higher power
by exploiting the full sample. As persistence increases toward unit-root and mildly explosive
settings, EL2 continues to provide steady calibration, whereas EL3 often remains competitive
with IVX in terms of power, though it may exhibit mild over-rejection under strong endogene-
ity as discussed above. Taken together, the evidence suggests that when endogeneity is mild
or controlled, the two-stage method (EL3) delivers near-oracle power with good size control,
whereas under strong endogeneity and high persistence, sample splitting (EL2) can serve as a

useful method that provides a stable calibration.
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Table 4. Finite-sample sizes for predictive quantile regressions

c T =0 ¢=—0.2 ¢ =—0.5
EL1 EL3 IVX EL1 EL3 VX EL1 EL3 IVX
-50 0.1 0.0578 0.0670 0.0665 0.0571 0.0692 0.0680 0.0543 0.0654 0.0634
0.2 0.0530 0.0609 0.0521 0.0529 0.0599 0.0519 0.0522 0.0608 0.0422
0.3 0.0524 0.0589 0.0453 0.0519 0.0590 0.0448 0.0482  0.0555 0.0445
0.4 0.0520 0.0543 0.0410 0.0498 0.0546 0.0411 0.0489 0.0551 0.0390
0.5 0.0486  0.0524 0.0391 0.0480 0.0520 0.0372 0.0499 0.0560 0.0362

0.6 0.0500 0.0538 0.0397 0.0486  0.0526 0.0394 0.0466 0.0529 0.0363
0.7 0.0514 0.0537 0.0458 0.0509 0.0530 0.0476 0.0474 0.0563 0.0398

0.8 0.0506  0.0555 0.0535 0.0481 0.0568 0.0491 0.0505 0.0552  0.0480
0.9 0.0595 0.0692 0.0702 0.0606 0.0652 0.0640 0.0576 0.0645 0.0603
-20 0.1 0.0541 0.0673 0.0671 0.0540 0.0653 0.0691 0.0538 0.0624 0.0640
0.2 0.0512 0.0569 0.0553 0.0544  0.0603 0.0538 0.0520 0.0631 0.0448
0.3 0.0513 0.0571 0.0480 0.0504 0.0564 0.0471 0.0511 0.0580 0.0422
0.4 0.0509 0.0531 0.0461 0.0472  0.0533 0.0451 0.0513 0.0547 0.0379

0.5 0.0476  0.0493 0.0440 0.0478  0.0515 0.0400 0.0487 0.0550 0.0348
0.6 0.0511 0.0542 0.0390 0.0498 0.0543 0.0405 0.0461  0.0549 0.0369
0.7 0.0505 0.0528 0.0453 0.0480 0.0555 0.0450 0.0509 0.0579 0.0406
0.8 0.0490 0.0553 0.0528 0.0516  0.0553 0.0506 0.0500 0.0574 0.0430
0.9 0.0572  0.0670 0.0675 0.0547 0.0638 0.0676 0.0505 0.0631 0.0630

0 0.1 0.0532 0.0525 0.1803 0.0520 0.0533 0.1717 0.0526  0.0593 0.1158
0.2 0.0483 0.0502 0.1588 0.0505 0.0467 0.1492 0.0529 0.0558 0.0849
0.3 0.0460 0.0452 0.1487 0.0453 0.0470 0.1361 0.0503  0.0553 0.0787
0.4 0.0460 0.0439 0.1466 0.0457 0.0429 0.1297 0.0512 0.0568 0.0777
0.5 0.0496 0.0423 0.1430 0.0471 0.0449 0.1287 0.0488 0.0584 0.0720
0.6 0.0459 0.0436 0.1416 0.0487 0.0477 0.1283 0.0484 0.0611 0.0715
0.7 0.0456  0.0475 0.1426 0.0466  0.0465 0.1357 0.0499 0.0608 0.0682
0.8 0.0484 0.0456 0.1567 0.0493 0.0478 0.1483 0.0504 0.0634 0.0801
0.9 0.0492 0.0582 0.1745 0.0495 0.0563 0.1754 0.0536  0.0659 0.1061

2 0.1 0.0513 0.0647 0.2130 0.0496 0.0645 0.2087 0.0530 0.0660 0.1726
0.2 0.0488 0.0520 0.1921 0.0511 0.0519 0.1877 0.0545 0.0618 0.1375
0.3 0.0477 0.0486 0.1791 0.0475 0.0483 0.1676 0.0527 0.0586 0.1267
0.4 0.0487 0.0492 0.1684 0.0482 0.0468 0.1677 0.0488 0.0608 0.1176
0.5 0.0495 0.0441 0.1652 0.0464 0.0467 0.1577 0.0507 0.0652 0.1158

0.6 0.0470 0.0464 0.1698 0.0476  0.0513 0.1581 0.0490 0.0622 0.1193
0.7 0.0456 0.0434 0.1730 0.0465 0.0451 0.1679 0.0505 0.0628 0.1214
0.8 0.0476 0.0507 0.1853 0.0481 0.0508 0.1831 0.0513 0.0612 0.1319

0.9 0.0488 0.0598 0.2167 0.0485 0.0642 0.2124 0.0512 0.0782 0.1707

Note: The table reports the empirical size (i.e., the probability of incorrectly rejecting the null hypothesis of
no predictability) in the quantile regression model (13), for a selected set of quantiles 7 € {0.1,0.2,...,0.9}.
Results are shown for EL1 (the EL method, where the intercept o is treated as known; Section 3.1), EL3 (the
two-stage EL procedure in Section 3.2), and IVX (benchmark test of Lee (2016)). All tests are conducted at
the 5% nominal significance level. EL tests are conducted using tanh-based weights and applying the Bartlett
correction. The simulation design accounts for various levels of persistence in the predictor X; through the
localizing constant ¢ € {—50, —20, 0,2}, 6 = 0.05, and endogeneity through the innovation correlation parameter
¢ € {—0.50,—0.20,0}. Rejection probabilities are based on 10,000 Monte Carlo simulations and sample size
T = 250.

5.3 Small-Sample Properties for Quantile Predictability Tests

We now examine the finite-sample performance of the proposed EL-based tests for quantile
predictability. As discussed in Section 3.2, the sample-splitting EL2 is not applicable to quantile
inference, so we focus on EL3 here. Table 4 depicts the results for test size and Figure 3

summarizes rejection probabilities across persistence regimes and endogeneity levels, comparing

23



EL1 (the EL method, where the intercept «, is treated as known), EL3 (the two-stage EL
procedure outlined in Section 3.2), and IVX (the test of Lee (2016)). To preserve clarity and
readability, for Figure 3, we report results for a selected set of quantiles 7 € {0.1,0.3,0.5,0.7,0.9}
that capture both tails and the center of the distribution as well as ¢ = —0.5. The intercept is set
to be 8 = 0.05 and the error is homoscedastic. Results for all other quantiles, for different levels
of endogeneity ¢ = 0, —0.2, with 8 = 0, and under heteroscedasticity are qualitatively similar,
and our test continues to exhibit good finite sample performance. Those further simulation
results can be found in the Internet Appendix.

The results of Table 4 show that the EL-based quantile tests perform very well across all
persistence regimes considered, with rejection probabilities generally close to the nominal 5%
level across quantiles. First, in the stationary (¢ = —50) and local-to-unity (¢ = —20) cases, at
the 5% nominal level, size is well controlled for EL1 and EL3. This reflects the EL constraint
being well behaved when regressors are not highly persistent and the intercept estimation error
remaining negligible. In these regimes, seeing from Figure 3, the power of EL3 is virtually
indistinguishable from EL1 across all reported quantiles, indicating that the two-stage procedure
preserves near-oracle efficiency. IVX is competitive in these cases but generally exhibits slightly
lower power than EL3, particularly near the null where local alternatives matter most.

As persistence increases, differences become more pronounced. In the unit-root case (¢ = 0),
EL3 remains competitive relative to IVX for moderate signals and often converges to one faster
near the null. IVX tends to over-reject in this design, especially at extreme quantiles, although
its size improves somewhat as endogeneity increases while still remaining well above nominal.
EL3 exhibits good size properties that are consistent across endogeneity levels, though the gap
between EL3 and EL1 widens. This reflects the impact of estimating a.;. Under high persistence,
the intercept error interacts with serial dependence to tilt the EL constraint, reducing local
efficiency and, when endogeneity is present, inflating size slightly at the tails. For mildly
explosive predictors (¢ = 2), these patterns intensify. IVX tends to converge marginally faster
than EL3 for large signals, particularly at extreme quantiles, but its size distortions are more
pronounced whereas EL3 remains stable.

Overall, the two-stage EL procedure exhibits strong finite-sample properties for quantile
predictability. In stationary and moderately persistent settings, it tracks the oracle EL1 closely
and performs very well in terms of power. Under unit-root and mildly explosive regimes, EL3
remains competitive relative to IVX. The evidence suggests that the two-stage EL delivers good

power and size across quantiles and persistence levels.

Remark 10. We note that the mild over-rejection observed for mean predictability under
strong endogeneity (cf. Remark 9) is less pronounced in the quantile predictability results. This
is because the quantile EL moment is built on the bounded score ¢, (u) = 7 — 1{u < 0} applied

to the quantile innovation Uy . Therefore, the innovation-driven component linked to ¢V; affects
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Figure 3. Finite-sample size and power plots for quantile predictability tests with homoscedastic
errors and correlation ¢ = —0.5

Note: The figure summarizes rejection probabilities (y-axis) for tests of the null hypothesis of no predictive ability
in the quantile regression model (13), for a selected set of quantiles 7 € {0.1,0.3,0.5,0.7,0.9}. Results are shown
for EL1 (the EL method, where the intercept a- is treated as known), EL3 (the two-stage EL procedure outlined
in Section 3.2), and IVX (benchmark test of Lee (2016)). EL tests are conducted using tanh-based weights with
Bartlett correction. The x-axis represents true values of the slope coefficient 3,, with 5, = 0 corresponding to
empirical size. The red dashed line marks the 5% nominal level. Rejection probabilities are based on 10,000
Monte Carlo simulations (see Section 5 for details of the simulation design). Results are reported for sample size

T = 250, localizing constant ¢ € {—50, —20, 0,2}, = 0.05, and innovation correlation parameter ¢ = —0.5.

the moment primarily through the sign of the quantile residual via the indicator function rather
than its magnitude. Consequently, increases in |¢| are less likely to generate the heavy-tail and
higher-moment inflation of the EL score that can arise in the mean case, where the moment
depends linearly on Uy = ¢V; + 2z;. This helps stabilize the EL constraint under high persistence

and yields more reliable finite-sample calibration across quantiles.

To summarize the findings of this section, the simulation evidence for both mean and quantile
predictability indicates that the proposed EL procedures offer strong finite-sample performance,
with well-controlled size overall, while remaining competitive with IVX under high persistence.
We now turn to an empirical application to assess how these properties translate into real-world

predictability patterns.
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Table 5. Empirical results for predictive mean regressions

Variable EL2 EL3 1IVX

Dividend price ratio 093 0.21 0.29
Dividend yield 0.88 0.16 0.24
Earnings price ratio 0.79 046 0.32
Dividend payout ratio 0.19 0.29 0.07
Book-to-market ratio  0.85 0.66 0.53
Net equity expansion 0.53 0.32 0.34

Treasury bill rate 0.04 0.03 0.02
Long term yield 0.11  0.11  0.08
The term spread 0.24 0.12 0.15
Default yield spread 0.66 0.29 0.30
Inflation 0.01 0.03 0.01

Note: This table reports p-values for the null hypothesis of no mean return predictability. The dependent
variable is the monthly continuously compounded return on the CRSP value-weighted index in excess of the
one-month Treasury bill rate. Predictive variables are listed in the first column. Results are based on EL2 (the
sample-splitting); EL3 (the two-stage EL procedure); and IVX (the test of Kostakis et al. (2015) and Phillips
and Lee (2016)). The sample period is from January 1952 to December 2024.

6 Empirical Application

This section is devoted to revisiting the evidence on the ability of financial and macroe-
conomic variables to predict stock market returns. Despite the voluminous literature on this
subject, there is still a debate as to whether future stock returns are predictable or not. On one
hand, studies like Lettau and Ludvigson (2001) argue that “...excess returns are predictable by
variables such as dividend-price ratios, earnings-price ratios, dividend-earnings ratios, and an
assortment of other financial indicators”. On the other hand, however, studies like Welch and
Goyal (2008) suggest that “...a healthy skepticism is appropriate when it comes to predicting
the equity premium”. We aim to shed some light on this debate by conducting a battery of
mean and quantile predictability tests that we developed in this paper.

We collect monthly data on the following eleven variables that are commonly used in the
literature as predictors of the aggregate market: the dividend payout ratio, the long-term yield,
the dividend yield, the dividend-price ratio, the Treasury bill rate, the earnings-price ratio,
the book-to-market value, the default yield spread, the net equity expansion, the term spread,
and the inflation rate. The data is obtained from Amit Goyal’s website? and covers the period
from January 1952 to December 2024. The dependent variable in all predictive regressions is the
continuously compounded return of the CRSP value weighted index? in excess of the one-month
Treasury bill rate.

We first analyze empirical evidence of mean predictability. Table 5 reports the p-values for

three testing procedures: the sample-splitting EL method in Section 2.2 (EL2), the two-stage

?See https://sites.google.com/view/agoyallas.
3The data for the CRSP index is obtained from Kenneth French’s website: https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/index.html
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Table 6. Empirical results for predictive quantile regressions

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Panel A: EL3

Dividend price ratio 0.32 0.65 099 060 0.70 0.44 0.16 0.10 0.76

Dividend yield 0.12 044 082 0.74 0.77 048 0.21 0.14 0.62

Earnings price ratio 039 0.77 064 031 041 0.75 0.25 0.37 0.79
Dividend payout ratio 0.68 0.81 0.38 0.20 0.29 0.18 0.09 0.03 0.15
Book-to-market ratio 0.72 042 033 0.10 0.17 080 0.33 0.14 0.66
Net equity expansion 0.51 0.32 0.05 0.05 0.06 0.64 021 029 0.01

Treasury bill rate 0.20 0.00 0.00 0.00 0.01 0.04 0.70 0.84 0.54

Long term yield 0.44 0.02 0.00 0.00 0.06 0.05 0.74 0.54 0.76

The term spread 0.14 0.02 0.15 0.15 0.13 0.37 090 042 0.21

Default yield spread 0.11 0.11 041 0.93 040 0.09 0.00 0.00 0.00

Inflation 0.22 0.04 0.00 0.00 0.01 0.12 0.30 0.63 0.17
Panel B: IVX

Dividend price ratio 0.00 0.00 0.01 0.89 097 0.28 0.04 0.00 0.00
Dividend yield 092 0.80 0.99 091 0.80 0.17 0.24 0.07 0.03
Earnings price ratio 0.85 0.16 0.04 029 071 0.65 0.39 0.37 0.10
Dividend payout ratio 0.04 0.23 0.44 0.02 0.07 0.08 0.19 0.01 0.04
Book-to-market ratio 0.00 0.00 0.01 0.15 0.73 0.04 0.00 0.08 0.00
Net equity expansion  0.87 0.28 0.29 0.33 0.39 0.97 041 0.35 0.07

Treasury bill rate 0.10 0.01 0.00 0.00 0.02 0.03 032 083 0.41
Long term yield 0.26 0.04 0.02 0.00 0.01 0.04 0.34 098 041
The term spread 0.06 0.11 0.46 0.78 0.61 0.66 0.77 0.70 0.86
Default yield spread 0.02 0.09 022 0.13 092 0.04 0.01 0.00 0.00
Inflation 0.18 0.15 0.01 0.00 0.00 0.04 0.25 0.30 0.12

Note: This table reports p-values for the null hypothesis of no predictability in conditional quantiles of excess
stock returns. The dependent variable is the monthly continuously compounded return on the CRSP value-
weighted index in excess of the one-month Treasury bill rate. Predictive variables are listed in the first column
and results are shown across quantiles 7 € {0.1,0.2,...,0.9}. Tests are based on two procedures: EL3 (the
two-stage EL procedure in Section 3.2) and IVX (the test of Lee (2016)). The sample period is January 1952 to
December 2024.

EL approach proposed in Section 2.3 (EL3), and the IVX procedure of Kostakis et al. (2015)
and Phillips and Lee (2016). The results indicate that the inflation rate and Treasury bill rate
are significant predictors under all three tests at the 5% level. There is also some evidence of
predictability for the dividend payout ratio and the long-term yield under IVX at the 10% level,
although these variables are not significant under the EL-based tests. All other predictors are
insignificant across methods, providing no statistical evidence to reject the null hypothesis of no
predictability for those variables. Overall, these findings provide some evidence that inflation
and short-term interest rates may have predictive content for market excess returns, while the
evidence for other variables is weak and depends on the testing method. This pattern suggests
that mean predictability, where present, is limited and concentrated in a few economically
relevant predictors and highlights the consistency of EL-based tests with conventional methods.

We next examine empirical evidence of quantile predictability. Table 6 reports p-values
for the two-stage EL-based test (EL3) and the IVX procedure across eleven predictors and
quantiles 7 € {0.1,0.2,...,0.9}. Several interesting findings emerge. First, the Treasury bill

rate and the long-term yield stand out as the most consistent predictors in the lower quantiles.
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Both variables are highly significant at 0.2 < 7 < 0.6 under EL3 and IVX, with p-values often
below 1%. This suggests that short-term interest rates and bond yields contain predictive
information for downside risk in equity returns. Inflation also shows strong significance in the
lower tail (0.2 < 7 < 0.5), particularly under EL3, while its predictive content diminishes in the
upper quantiles.

At central quantiles (say, 7 = 0.50), evidence of predictability weakens considerably across
all variables. In the upper tail (7 > 0.70), most predictors are insignificant, with the exception
of the default yield spread, which becomes significant under both EL3 and IVX, indicating its
relevance for extreme return outcomes. IVX occasionally flags dividend-related ratios and term
spreads at the 10% level, but these signals are rather sporadic.

Overall, predictability appears concentrated in the lower tail of the return distribution, with
interest rate variables and inflation emerging as the most relevant predictors, while the default
yield spread dominates in the upper tail. Other predictors exhibit weak or inconsistent signifi-
cance, reinforcing that predictability is limited to a small set of variables and primarily in the
tails. This pattern shows the importance of modeling tail behavior and suggests that quantile-

based tests can reveal forms of predictability that remain not captured in mean regressions.

7 Conclusion

This paper develops an empirical likelihood framework for unified inference in predictive
mean and quantile regressions across a broad spectrum of persistence, including stationary,
near-integrated, unit-root, and mildly explosive predictors. We establish Wilks-type chi-squared
limits of the proposed test statistics uniformly across the persistence of the predictor. We handle
the unknown intercepts through two complementary procedures: a sample-splitting approach
that operates under relaxed regularity conditions, and a new two-stage method that uses the full
sample to improve efficiency and extends naturally to quantile inference, where sample splitting
is infeasible. We investigate higher-order finite-sample distortions under strong persistence, and
propose gradually saturating weights and a Bartlett-type bias correction to mitigate the effects.

Simulation evidence demonstrates that the proposed EL procedures deliver well-calibrated
size and competitive power across persistence regimes. In mean regressions, the two-stage
method improves efficiency and sample splitting exhibits robust size properties even in highly
persistent settings. In predictive quantile regressions, the EL approach performs particularly
well, delivering close-to-nominal size across a wide range of quantiles including the tails, while
retaining strong power relative to existing alternatives in many scenarios.

An empirical application to U.S. equity returns illustrates the practical value of the frame-
work. Mean predictability is modest and concentrated in a small set of predictors such as

inflation and short-term interest rates. Quantile-based inference uncovers richer heterogeneity
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across the return distribution, with interest-rate variables and inflation showing stronger pre-
dictive content in the lower tail and the default yield spread becoming more informative in the
upper tail. The results reveal that predictability is not uniform across the distribution, point-
ing to the importance of distributional analysis in asset returns predictability. The findings
highlight the practical relevance of the proposed framework for risk management, portfolio al-
location, and policy evaluation, offering a flexible and theoretically grounded tool for assessing

predictability across the entire conditional distribution of returns.

References

Amihud, Y. and C. M. Hurvich (2004). Predictive regressions: A reduced-bias estimation
method. Journal of Financial and Quantitative Analysis 39(4), 813-841.

Andrews, D. and P. Guggenberger (2014). Asymptotics for ls, gls, and feasible gls statistics in
an ar(1) model with conditional heteroskedasticity. Journal of Econometrics 169(2), 196-210.

Aue, A. and L. Horvath (2007). A limit theorem for mildly explosive autoregression with stable
errors. Econometric Theory 23(2), 201-220.

Belloni, A., V. Chernozhukov, and D. Chetverikov (2019). Conditional quantile processes based
on series or many regressors. Journal of Econometrics 213(1), 4-29.

Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes (2nd ed.). Springer, Berlin.

Cai, Z., H. Chen, and X. Liao (2023). A new robust inference for predictive quantile regression.
Journal of Econometrics 234 (1), 227-250.

Cai, Z. and Y. Wang (2014). Testing predictive regression models with nonstationary regressors.
Journal of Econometrics 178, 4-14.

Cai, Z., Y. Wang, and Y. Wang (2015). Testing instability in a predictive regression model with
nonstationary regressors. Econometric Theory 31(5), 953-980.

Cai, Z. and Z. Xiao (2012). Semiparametric quantile regression estimation in dynamic models
with partially varying coefficients. Journal of Econometrics 167(2), 413-425.

Campbell, J. Y. and M. Yogo (2006). Efficient tests of stock return predictability. Journal of
Financial Economics 81(1), 27-60.

Cavanagh, C. L., G. Elliott, and J. H. Stock (2009). Inference in models with nearly integrated
regressors. Econometric Theory 11(5), 1131-1147.

Cenesizoglu, T. and A. Timmermann (2012). Do return prediction models add economic value?
Journal of Banking & Finance 36(11), 2974-2987.

Choi, Y., S. Jacewitz, and J. Y. Park (2016). A reexamination of stock return predictability.
Journal of Econometrics 192(1), 168-189.

Dangl, T. and M. Halling (2012). Predictive regressions with time-varying coefficients. Journal
of Financial Economics 106(1), 157-181.

29



Demetrescu, M., I. Georgiev, M. M. Rodrigues, Paulo, and A. M. Taylor, Robert (2023). Exten-
sions to IVX methods of inference for return predictability. Journal of Econometrics 237(1),
105-271.

Demetrescu, M. and P. M. M. Rodrigues (2022). Residual-augmented IVX predictive regression.
Journal of Econometrics 227(2), 429-460.

DiCiccio, T., P. Hall, and J. Romano (1991). Empirical likelihood is bartlett-correctable. Annals
of Statistics 19(2), 1053-1061.

Dittmar, R. F. (2002). Nonlinear pricing kernels, kurtosis preference, and evidence from the
cross section of equity returns. Journal of Finance 57(1), 369-403.

Fan, R. and J. H. Lee (2019). Predictive quantile regressions under persistence and conditional
heteroskedasticity. Journal of Econometrics 213(1), 261-280.

Gao, J. and I. Gijbels (2008). Bandwidth selection in nonparametric kernel testing. Journal of
the American Statistical Association 103, 1584-1594.

Gonzalo, J. and J.-Y. Pitarakis (2012). Regime-specific predictability in predictive regressions.
Journal of Business & Economic Statistics 30(2), 229-241.

Gu, S., B. Kelly, and D. Xiu (2020). Empirical asset pricing via machine learning. Review of
Financial Studies 33(5), 2223-2273.

Hall, P. and C. Heyde (1980). The central limit theorem. In P. Hall and C. Heyde (Eds.),
Martingale Limit Theory and its Application, pp. 51-96. Canberra: Academic Press.

Harvey, C. R. and A. Siddique (2000). Conditional skewness in asset pricing tests. Journal of
Finance 55(3), 1263-1295.

Jacquier, E., N. G. Polson, and P. E. Rossi (1994). Bayesian analysis of stochastic volatility
models. Journal of Business & Economic Statistics 12(4), 371-389.

Kitamura, Y., G. Tripathi, and H. Ahn (2004). Empirical likelihood-based inference in condi-
tional moment restriction models. Econometrica 72(6), 1667-1714.

Koenker, R. (2005). Quantile Regression. Cambridge University Press.
Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica 46(1), 33-50.

Kostakis, A., T. Magdalinos, and M. P. Stamatogiannis (2015). Robust econometric inference
for stock return predictability. Review of Financial Studies 28(5), 1506—-1553.

Lee, J. H. (2016). Predictive quantile regression with persistent covariates: IVX-QR approach.
Journal of Econometrics 192(1), 105-118.

Lee, J. H. (2018). Limit theory for explosive autoregression under conditional heteroskedasticity.
Journal of Statistical Planning and Inference 196(1), 30-55.

Lettau, M. and S. Ludvigson (2001). Resurrecting the (C)CAPM: A cross-sectional test when
risk premia are time-varying. Journal of Political Economy 109(6), 1238-1287.

Li, C., D. Li, and L. Peng (2017). Uniform test for predictive regression with ar errors. Journal
of Business € Economic Statistics 35(1), 29-39.

30



Ling, S. (2005). Self-weighted least absolute deviation estimation for infinite variance autore-
gressive models. Journal of the Royal Statistical Society, Series B 67(3), 381-393.

Liu, X., B. Yang, Z. Cai, and L. Peng (2019). A unified test for predictability of asset returns
regardless of properties of predicting variables. Journal of Econometrics 208(1), 141-1509.

Liu, Y. and J. Chen (2010). Adjusted empirical likelihood with high-order precision. Annals of
Statistics 38(3), 1341-1362.

Magdalinos, T. and P. C. B. Phillips (2009). Limit theory for cointegrated systems with mod-
erately integrated and moderately explosive regressors. Econometric Theory 25(2), 482-526.

Maynard, A., K. Shimotsu, and N. Kuriyama (2024). Inference in predictive quantile regressions.
Journal of Econometrics 245(1-2), 105875.

Otsu, T. (2008). Conditional empirical likelihood estimation and inference for quantile regression
models. Journal of Econometrics 142(2), 508-538.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.
Biometrika 75(2), 237-249.

Owen, A. B. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics 18(1),
90-120.

Park, J. Y. (2002). Nonstationary nonlinear heteroskedasticity. Journal of Econometrics 110(2),
383-415.

Pesaran, M. H. and A. Timmermann (1995). Predictability of stock returns: Robustness and
economic significance. Journal of Finance 50(4), 1201-1228.

Phillips, P. C. B. (1987). Time series regression with a unit root. Econometrica 55, 277-301.

Phillips, P. C. B. (2015). Halbert White Jr. memorial JFEC Lecture: Pitfalls and possibilities
in predictive regression. Journal of Financial Econometrics 13(3), 521-555.

Phillips, P. C. B. and J. H. Lee (2013). Predictive regression under various degrees of persistence
and robust long-horizon regression. Journal of Econometrics 177(2), 250-264.

Phillips, P. C. B. and J. H. Lee (2016). Robust econometric inference with mixed integrated
and mildly explosive regressors. Journal of Econometrics 192(2), 433-450.

Phillips, P. C. B. and T. Magdalinos (2007). Limit theory for moderate deviations from a unit
root. Journal of Econometrics 136(1), 115-130.

Phillips, P. C. B., Y. Wu, and J. Yu (2011). Explosive behavior in the 1990s nasdaq: When did
exuberance escalate asset values? International Economic Review 52(1), 201-226.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Stambaugh, R. F. (1999). Predictive regression. Journal of Financial Economics 54(3), 375—
421.

Wang, H. J. and Z. Zhu (2011). Empirical likelihood for quantile regression models with longi-
tudinal data. Journal of Statistical Planning and Inference 141(4), 1603-1615.

31



Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity
premium prediction. Review of Financial Studies 21(4), 1455-1508.

Xiao, Z. (2009). Quantile cointegrating regression. Journal of Econometrics 150(2), 248-260.

Yang, B., X. Liu, L. Peng, and Z. Cai (2021). Unified tests for a dynamic predictive regression.
Journal of Business € Economic Statistics 39(3), 684-699.

Yang, B., W. Long, L. Peng, and Z. Cai (2020). Testing the predictability of u.s. housing
price index returns based on an IVX-AR model. Journal of the American Statistical Associ-
ation 115(532), 1598-1619.

Zhu, F., Z. Cai, and L. Peng (2014). Predictive regressions for macroeconomic data. Annals of
Applied Statistics 8(1), 577-594.

32



Appendix: Proofs of the Main Results

We use C' and C’ to denote some generic constants whose value may vary between oc-
currences, unless defined otherwise. Without loss of generality, we assume Xy = 0 following

standard practice. The norm ||.||; is taken to mean the L;-norm.

Proof of Theorem 1. The proof is a special case of the proof of Theorem 3 below, with a

being a fixed, known constant, and hence is omitted for brevity. O

Proof of Theorem 2. We establish the asymptotic normality via the martingale central
limit theorem, Corollary 3.1 of Hall and Heyde (1980). First, the effect of 6 in equation (2)
can be eliminated by employing similar argument in the proof of Theorem 2 in Zhu et al.
(2014), although their error terms are assumed to be strictly i.i.d. The next step concerns the
derivation of the probability limit of the martingale conditional variance. We write H,, s =
o(UXU:_,... .U et ex_y...,ep) with U = Uy, — Us, €5 = €51m — €5, and recall that Uy is
a martingale difference with respect to Gs—1 = o({V;, 2z} : 7 < s —1).
Define Z7, := (Y} — X} )w(X; ) = Ufw(X;_ ). If we write p; := E(Z},|Hm,—1) and
Z}t = Z, — i, then {Z}t} is a martingale difference array with respect to H,,;—1. We later
show in (25) that m~Y/23"" 1 = 0,(1) and LS VEW) < Cm Y a(k) — 0. Under

conditional homoscedasticity of Us (i.e. Assumption 2(i)), we have from (8) that

1 %
721& HHmi—1) = EZIE(ZTme,t_l) + 0,(1)

t=1

- lys ([(Y; - BXE (X))

E (Ut*Q 1) ‘Hm,t1> +0p(1)

”Hm,t_1) + 0p(1)

3|~
M= 10 T

[E(UZ | Himi—1) + E(UZ Hmui—1) + 0] - w(X;_1)* + op(1)

3=
o~
i
I

[012] + E (E(Ut2|gt—1+m)‘7'[m,t—l)] cw(X[ )%+ op(1)

I
3|
NE

~~
Il

1

1 m
= Ezw 2+ —thw 21)? + 0p(1)
=1 t=1

o
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2
= U w(x; th—aU (X71)" +0p(1) = Qi+ Qa2 +0p(1) (19)

m
t=1

by the tower property of conditional expectations.

Now, write B := o({Vjtm,2j4m} : 0 < j < t—1,7 +m > t) so that upon noting
j € {0,1,...,t — 1} we see that B = o(Vin, 2m, Vint1, Zm+1s -« -« » Vic14ms 2t—1+m). 1t is then
straightforward to show that (G;—1 V Hmi—1) C (Gi—1 V B), where C VD = ¢(C U D), the join
of o-fields.
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Therefore, we have

lge = ot b = BUHmi-1) — E(UF|Gi-1) 1
< |BUEGe-1 V Hini—1) — E(UZ|Ge-1) |11
< |E(UE|Gi-1 v B) = E(U|Ge-1) |11
= |[E[U? — E(U?|Gi-1)|Gi—1 V B]|
< sup  [E[(Uf — E(U}(G—1))Y]]
YeL>®(Gi—1VB)
Y lleo<1
< C sup |COV(Ct, Y)|, (20)
YeL=(B)
[Ylloo<1

because E(U?|F) — E(U?|A) = E[U? — E(U?|A)|F] for A C F, and for integrable W := U? —
E(U#|Ge-1) and [[Y]|oe < 1, we have (i) E[WY] = E[E(W|F)Y] < EEWI|F)[Y]] < [[E(W|F)]|,
and (ii) choosing Y* := sgn(E(W|F)) we have Y* € L>(F),|Y*||x < 1, and supy |E[WY]| >
E[WY*] = E[E(W|F)sgn(E(W|F))] = EIE(W|F)| = [E(W|F)|l1. Here ¢ = U — E(U7|Gs-1)-

Since 0(¢) C o((Vs,2s) : s < t), o(Y) C B = o((Vs, 25) : s > m), and sup, E|U;|**7 < oo,
for p = (24 q)/q we have

|Cov(G, Y)]

IN

Ca(m —t)"?)1¢l21q)/2l1Y Nl
C'a(m — t)l/pHUt2||(2+q)/2 (21)

N

for each t = 1,...,m by Davydov’s inequality (see, for example, Corollary 1.1 in Bosq (1998)).
Note that for all weight function choices we consider: w(z) = x/vV1 + 22, w(z) = z/(1+|z]),
and w(z) = tanh(x/b), we have w(X;—1)? = O,(1). Hence, in view of (20) and (21), the Cesaro

mean theorem yields

1 & .
1Qma2lli = %Z(Qt_aé)w( r)?
t=1 1

< ingﬁ(,g]H < gia(mit)l/P

M b Mz
1 m—1

< =N ak)? o, (22)
mk:O

because a(k) — 0 as k — oo, and 0 < a(k) < 1.
In the meantime, since p; = wW(X;_)E(Uitm — Ut|Hmi—1) = —w(X; ) E(U|Hm,¢—1) and
Hmt—1 C (Ge—1 V Bt), using similar idea as in (20), (21), and Davydov’s inequality, we have

IEUdHme—1)ll1 < IE(UGe-1 V Byl

< C sup |Cov(U,Y)| (23)
YeL>(B)
Y lloe<1

< Calm = )| Ullz+qllY I (24)
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where § =1—-1/2+¢q)=(14+¢)/(2+q).
Since by Assumption 1, the mixing rate is either geometric or polynomial with exponent
greater than 2+ 1/(2(1 + ¢)), we have

1 & 1 &
72/% < 72”/&”1
‘ \/TTL t=1 1 \/ﬁ t=1
m m—1
< \/CEZa(m—t);g - \/%Za(k)ii?%o. (25)
t=1 k=0

Furthermore, following the same argument and using the Le-norm instead, we can also imme-
diately see that = >, E(47) < Cm ™1 >, a(k)® — 0.
Returning to (22), since Q,, 2 = op(1), we finally have

;ij(Z;fmm,t_l) = 207 - {; fjwwz:l)?} +0,(1). (26)

t=1

Now, we note that in the mildly integrated case, i.e., p = pr =1+ ¢/T® with 0 < a < 1 and
¢ < 0, Phillips and Magdalinos (2007) showed that

t
T ey = [ W), (27)

where W is Brownian motion with variance 02 = E(¢?) and = refers to weak convergence
in the Skorohod space DJ0, /] (i.e. the space of the collection of R-valued cadlag functions on
[0,1]), see e.g. Pollard (1984). The initial condition Xy = 0,(T%?) is imposed, and a finite
moment strictly higher than 2 is required for the i.i.d. error term, which is consistent with what
we assume.

Furthermore, in the mildly explosive case, i.e., p = pr = 14+¢/T* with 0 < a < 1 and ¢ > 0,
the proof of Aue and Horvéath (2007) suggests that for any fixed constant ¢ > 0 we have

1
02 (E(e2))1/2

l
pil‘e/éTjXL@/ij — eeWahyﬁh(g)—i_/O Wah,ﬁh(x)dwv (28)

where {7 = logp = log pr = log(1 4+ ¢/T%) — 0 as T" — oo, and W,,, 3, is a strictly a-stable
random variable.

In the near integrated case where a = 1 and ¢ # 0, we know from Phillips (1987) that

1 T
=Xy = /0 <=5 g1 (s). (29)

In all three cases, the denominators of the “multiplier” to X all tend to the infinity in the
LHS of (27), (28) and (29). Specifically, we have |X;| & +oo (i.e. P(|X}| > r) — 1 for every
r > 0.
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By Skorokhod representation theorem and Lebesgue’s dominated convergence theorem, we

have
w(X{ )P 1 (30)
as t — oo.
For example, we have
X* 2 X* 2
(X7 ) L, 4. (Xi) EINST tanh?(X;_, /b) 1 (31)

e — _> ) —*
L+ (X7 )2 (1 + X742

as t — oo, for any fixed b > 0. Consequently, the stochastic convergence of Cesaro means of

random variables ylelds
w
m t 1
t=1

as T"— oo, which implies convergence in probability to 1. Therefore, in view of (19), (26), and
(32) we finally have

_) 2, 20(2] (33)

in all nonstationary cases we consider.
Meanwhile, in the stationary case where |p| < 1, since w(+) is bounded and continuous (hence

measurable), we have

t—1

E[w (X;_I)Q} =E{w <z_:pt i-1 *)2 + o(1).

=1

We write lim;—, oo E{-} =: v/ so that E{w (X} ;)?} = v*+o0(1) as t — co. Here the linear process
Y oreo pke;;k . is well defined and converges absolutely a.s. since » ;| plF < oo; moreover w?

is bounded, so dominated convergence yields the limit. For example, when w(z) = x/v/1 + 22,

Szl
= R0
(i pitey)? )
{1+<22 L
= 12+ 0,(1) (34)

lim E

t—o00

because the series converges absolutely almost surely.
Therefore, by the law of large numbers for stationary processes, as m = |T/2| — oo it
follows that

m

1 }
EE E(Z3 Mmg—1) > 208 - 12 (35)
t=1
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By Assumption 1, Markov’s inequality, and Jensen’s inequality, for any € > 0 we have

m *2 %,2
(T )
t=1
< ;M (‘ NG %m,t_l)

< ca/2mi+ta/2 ;E <|Ut |7 ‘w(Xt—l)’ ! Hm,t—l)
*|2+q m
Sllpt]E‘Ut ‘ 1 % 2+q B 1 B
e o [T = 0,1 s =0,(1). (36)

t=1

2+q

Now that the conditional Lindeberg condition (36) is met, it follows by the martingale central
limit theorem (e.g. Hall and Heyde (1980)) that

i N(0.7%), (37)

ﬂ\

where 7)? is the probability limit of (19), i.e. 20% - 12 in the stationary case and 207 otherwise.
The same result holds under conditional heteroscedasticity of Uy, i.e. Assumption 2-(ii) as

we show now. Consider
1 — i
-~ Z (Ui Himi—1) + E(UZ Hma—1)] w(X;1)? = Wiy + Way.
t=1

For the first term, using the same arguments used before and the Cesaro mean theorem we have

B mHomi—1) = olimlly = BB mIGetim]Hini—1) = oyl

|E (07 mlHmi—1) — 07pmll,
< Ca(m— )79 0 (38)

Similarly, as for the second term, we have
|E@2Hm 1) ~ EUFGi-)||, < Ca(m -2/ — o, (39)

Hence, it follows by the triangle inequality that
1 m
Wit War = — 3 (0hm + oD)u(Xi)? + oy(1), (40)
t=1

because 0 < w(X; {)? < 1, a.s., w(X; ;)? converges in probability to a constant as ¢ — oo for

+Q/2)

all persistence classes C1—C5, and sup, E(o; < 00.
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Furthermore, with the uniform boundedness of Eo? we see that

1 m 1 m 2m 1 2m
2 2 2 2 2
23t vt = & (oot 3 ) -0 S )
t=1 s=1 s=m+1 s=1
and therefore, in view of (40), (41) and Assumption 2, it follows that W;; + Wa; converges
in probability to 202 - v? in the stationary case and 202 otherwise. The conditional Lindeberg
condition can be verified by following the same argument as above, using the boundedness of
the weight and E|U;|?"9, and is not repeated for brevity.

We now check if X converges in distribution to a random variable (that is finite a.s.) in the
conditionally heteroscedastic case. In the mildly explosive case, by Lemma 4.1 of Lee (2018) we

have
1

where X, is centred Gaussian random variable with variance E(0?)/(2¢). The cases of unit
root and mildly integrated regressors can be handled based on the results by Andrews and
Guggenberger (2014).
As for the near integrated case, Lemma 3.1 of Lee (2018) showed that the same limit theory
of Phillips (1987) in the conditional homoscedastic case is valid: i.e.,
1

— Xy = ) 43
T=Xiry = [ e aws) (43)

Consequently, we see that the previous argument continues to apply, and

w(X;)? 1 (44)

For example, for w(z) = z/v1 + 22 we have (X;_1)?/(1 + (X;_,)?) =P 1.
Therefore, as before in (37) it follows that

1
m

3

S Z3(8) -5 N(0,7), (45)
t=1

where 72 is equal to 202 - 2 in the stationary case and 202 otherwise.

Finally, following the same derivations in (16) we have

2
(2 z)
" \/ﬁzt—l t d 9
tr(B) o +o0p(1) — X1, (46)
! Y RIC) 1
which completes the proof. O
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Proof of Theorem 3. With Y; = Y; — & and Z(ﬂ) = [fft - ﬂXt_l] - w(Xy—1), recall that

the centered weight is

W (X ) = w(X1) — %Zw(Xs_l). (47)

We have

1 1 < .
?Z TZ — BX1] - w(Xe1)

T
~ 1 .
= E Unw(Xy—1) \/T(a—oz)f E w(Xy—1) = Ar — Brp,
t=1

and Brp is zero by the construction of the centered weight.
In order to employ the martingale central limit theorem, it remains to establish (i) an
asymptotic limit for Az, and (ii) consistency of the average 7! Zle(Utwc(Xt,l))2, as well as

checking the conditional Lindeberg condition. For simplicity of presentation we write
1 X
wy = w(X—1), wr = T Zws, wy 1= wy — wr, (48)

so that Ay = T~Y/2 " Uyw§. Define also

T T
1 1
— E Utwt, A(]T = —— E Ut, (49)
Y vT t=1

so that Ap = Ay — wrpAor. Given Gy := o({Vs, 25} : s < t), since Uy is a martingale difference

with respect to G;—1 and w; = w(X;—1) is G;—1-measurable, the vector

Uyw
App=| 0 (50)
Ut

is a martingale difference array with respect to G;—1. Consider the normalized partial sums

1 & Air
VT ; Aor

Write o7 := E(U? | Gi—1), which equals o7 under Assumption 2(i) and may be time-varying

under Assumption 2(ii). The predictable quadratic variation matrix of My is
1 T

T 2
() i= 1 Y E(ArdnlGi) = 3o |17 ). (52)
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The weight assumptions (i.e. boundedness and asymptotic stability of Cesaro averages of w?
across persistence classes C1 — C5) imply that (M)p converges in probability to a finite, pos-
sibly random, limit matrix ¥. Consequently, the scalar quadratic variation associated with the

centered combination satisfies
1 T
= 2w s o (5)
t=1

where 7% vary across persistence classes. We emphasize that unlike in Theorem 2, 1? here
depends on the probability limit of wr (instead of w?), and hence may be random.

Next, we check the conditional Lindeberg condition. Since the weight satisfies |w(-)| < 1,
a.s., we have |w§| < |wy| + |wr| < 2, hence ||Agy|| < C|Uy|. Using sup, E|U|*T? < oo from
Assumption 1, for any € > 0, it follows that

T
Z <||ATt||21{HATt|| > VT

c 1
gt—l) < Taj2 TZE(|Ut|2+q|gt_l) = 0p(1).

’ﬂ \

Therefore, by the martingale central limit theorem we obtain the following stable convergence

to mixed-normal:
st

Mp — MN(0,%), (54)
which implies
Ap = (1 _wT) My =5 MN(0, 7). (55)

In particular, when 7? is nonrandom, depending on the persistence class, this reduces to the

usual N (0,7?) limit. Consequently, we have

T
\/IT S U (Xi-1) =5 MN(0, 7). (56)
t=1

Write Vi := T-1 31, (Utwtc)2. We have

T T
ZUt ’U}t—’wT = Z ZUtwt+wT Z — A(2 —|—B( )+Cj(—‘2)
=1 =1

Similarly, we define

T
2,0 1 2,0 1
ZO‘ w?, Béq )= TZU?U&, C’; )= TZU?. (57)

t=1 t=1 t=1

'ﬂ\'—‘

Since wy is Gi_1-measurable, for k& = 0, 1,2, each difference Uw} — E(U? | Gi_1)wf = (U -
af)wf is a martingale difference.

With sup, E|U;|**? < oo and bounded w;, the standard martingale law of large numbers
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yields Ag?) - Ag?’o) = 0p(1), Bé?) - Bg’o) = 0p(1), and Cg) - Céz,o) = 0p(1). Therefore, we have

Ve = APY — 2w, BEY 4 02080 4 0,(1)

1
of (W) + 0p(1) = n3 + 0p(1) 5 . (58)

Mﬂ

t:l

Now, in view of (56) and (58), we have

Ar AT s
\/—VLT LN N(0,1), and hence Vg N X3 (59)

Hence, standard Taylor expansion argument as in equations (15) as before yields ZT(B) —st 2

as T — oo, which implies the desired convergence in distribution.

Proof of Theorem 4. The proof is a special case of the proof of Theorem 5 below, with o,

being a fixed, known constant, and hence is omitted for brevity. O

Proof of Theorem 5. We write 1, (u) = 7 — 1(u < 0), wy := w(Xy_1), Wy := T~} Zle W,

and wy = w; — wp. With the two-stage intercept-adjusted response 17,5 :=Y; — a,, we have
&r(Br) 1= Ur (Ve = BrXen)wf = ¢r(Vi — &7 — Xy )wf. (60)

Since there exists a constant f-(0) € (0,00) and g9 > 0 such that, uniformly in ¢, F} - (u|Gi—1) :=
P(Ur <u|Gi—1) =7+ f+(0) u+ O(u?) as. for |u| < ey by Assumption 3, we have

T T T
=88 = = Ul + = 3 (Ui = @ — ) = () o
t=1 t=1

~
Il
,_.

31~ 3\
E

~~
Il
—

Dy(ar — ar) - wy

T
1
= — U - )wy +
77 ; Vr (U )
=: Ar+ Ryp. (61)
Note that Lee (2016) implies that & is v/T-consistent for .. Using the standard decomposition
Di(ar — ar) = E(Di(ar — ar)|Gi—1) + Di(ar — ), with E(Dy(a; — ar)|Gi—1) = 0, we have

T

1
Rr = —= 3 E(Di(@: — ar)lGe1)uf + *ZDt r - an)wf =i Rri+ Bra. (62)
T t=1 t 1

Since E(Dy(ar —a7)|Gi—1) = Fi 7(0|Gi—1) — Fy v (07 — 7 |Gi—1) = 7 — Fy 7(0r — 1 |Gy—1), we have
T

Ry = [VI1 )@ —ar) +C- (@ — ] 7 wf = 0. (63)

t=1
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by construction. Next, for Rr 2, noting that 1Dy(+)] <1, |w§| < 2, it follows that

T

S B(DUGs — an)?Gi-1) = opl1), (64)

E(R75|Gi-1) < —
T t=1

and hence Ry = 0,(1). Similarly, on noting boundedness of 12, it follows that 7~ Zthl 57( Br)2—
T (r (Urr)w§)? = op(1).
Since X;—1 is Gi—1-measurable, we have E(¢, (Ui ,)|Gi—1) = 0 and E(¢,(Uz+)? | Gio1) =

7(1 — 7). Therefore, ¢, (U ;) is a martingale difference with respect to G;—1, and the rest of the

proof is closely similar to the proof of Theorem 3. Write

¢T(Ut,7')wt 1 r - ZT: wT(Ut,T)wt
Aty = , My = Wi ZATt = */Tl tTl (65)
Y7 (Utr) T 77 2i=1 Yr(Usr)
Then, the quadratic variation of My is given by
1 & 1 wi  wy
(M) = T ZE(ATtA/Tt|gt—1) =7(l1-71)- T Z ' ; (66)
t=1 =1 \wr 1
and following the same steps in the proof of Theorem 3, it follows that
(1 —ar) Mr =5 MN(O,1), (67)
where
1 1 <
o= (1 —ar) M | | =r0-1) 2> @p? B (63)
—wr T t=1

In the meantime, since wy is G;—1-measurable and E(¢; (Uz +)2|Gi—1) = 7(1 —7), we can straight-

forwardly show consistency of the self-normalizer as before. That is,

1~ )
VT — T ;ft,T(ﬁT,O)

T T T
_ 1 2 2 - 1 2 _ 1 9
T ; G 2wr ;wT(UtJ) wi + W ;¢T(Utﬁ) + 0p(1)

T

(=) A S w0 4 op(1) L (09
t=1

Consequently, as T' — oo,

(£30,6.60)

S &r(Bro)
t=1 St,7\M7,0 s
VT t " SN2 (70)

— N(0,1), and hence
VVr

Therefore, ZTJ(ﬂT) converges in distribution to X% as desired. The proof is now complete. [
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