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Abstract

We develop an empirical likelihood framework for testing return predictability in the condi-

tional mean and conditional quantiles. A unified chi-square limit theory is established across

a broad spectrum of predictor persistence, including stationary, mildly integrated, nearly in-

tegrated, unit-root, and mildly explosive cases. We provide two complementary approaches

to handle the unknown intercept: (i) a sample-splitting approach under relaxed regular-

ity conditions and (ii) a new two-stage method that improves efficiency and accommodates

quantile inference, where sample-splitting is infeasible. We examine the finite-sample bias of

the two-stage method, and propose a bias-correction scheme and gradually saturated weights

that improve performance under high persistence. Simulation evidence demonstrates that

our tests exhibit competitive size and power across persistence classes, with notable gains

in quantile predictability. An empirical application to the U.S. stock market shows mod-

est evidence of mean predictability, whereas quantile-based inference reveals stronger and

economically relevant predictability in the tails of the return distribution.
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1 Introduction

The predictability of asset returns has long been a central topic in financial economics, as it

bears directly on foundational questions of market efficiency, asset pricing, and portfolio choice.

At the core of these issues lies the behavior of the conditional distribution of financial returns,

encompassing not only the first moment but also higher-order characteristics such as tail risk

and asymmetry. Understanding how these distributional features relate to available information

provides a powerful lens through which key empirical puzzles in financial economics are explored,

such as the equity premium puzzle, excess volatility, and time-variation in expected returns.

While much of the literature has focused on the conditional mean of asset returns and its

predictability (see Pesaran and Timmermann, 1995; Dangl and Halling, 2012; Gu et al., 2020),

growing attention has been directed toward approaches that capture heterogeneity across the

conditional distribution, recognizing that predictive relationships may vary at extreme quantiles

where downside risk is important. Because mean regressions summarize average predictability

across all quantiles, they can obscure such variation and may not adequately capture predictabil-

ity in specific regions of the distribution, as discussed by Gonzalo and Pitarakis (2012). This

has motivated the use of quantile regressions, which provide a more complete view of return

predictability (see, among others, Koenker, 2005; Xiao, 2009; Lee, 2016; Fan and Lee, 2019; Cai

et al., 2023).

It is essential to recognize, however, that predictive regressions, whether focused on the

mean or other distributional features, face significant econometric challenges. One of the most

fundamental challenges is the dynamic nature of predictor variables, which may range from

strongly stationary to unit-root and even mildly explosive behavior. Greater persistence (i.e.,

movement toward nonstationarity) introduces severe complications for standard estimation and

inference methods, including biased coefficients and nonstandard limiting distributions; see, for

example, Phillips (2015).

In practice, the temporal properties of predictors are typically unknown a priori, making

it difficult to select a method suited to the true data-generating process. This uncertainty

highlights the importance of developing unified inference procedures that remain valid across

different persistence regimes. Several approaches have been proposed to tackle this challenge,

which can broadly be divided into three strands of research. The first method includes the Bon-

ferroni t-test by Cavanagh et al. (2009) and the Bonferroni Q-test by Campbell and Yogo (2006)

for mean predictability, along with the quantile extension developed by Maynard et al. (2024).

Despite their innovative treatment of the problem, Bonferroni methods face some limitations,

including nonstandard asymptotics and joint normality assumptions on the error terms.

The second strand builds on the IVX methodology introduced by Magdalinos and Phillips

(2009). This seminal approach involves filtering the predictor to construct an instrumental
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variable with a controlled degree of persistence, which is then used in the predictive regres-

sion of interest. A key advantage of this method is that the resulting test statistic follows a

standard chi-squared limiting distribution, regardless of the persistence characteristics of the

original predictor. Several notable contributions have built upon this framework. For example,

in the context of mean predictability, Kostakis et al. (2015) apply the IVX methodology to ex-

amine whether stock market returns are predictable by lagged financial variables. Phillips and

Lee (2016) explore inference under local explosiveness and mildly explosive roots, Demetrescu

and Rodrigues (2022) introduce a bias-corrected IVX estimator, analogous to the finite-sample

correction by Amihud and Hurvich (2004), Demetrescu et al. (2023) propose refinements for

greater robustness, and Yang et al. (2020) develop the IVX-AR test to account for serial cor-

relation and heteroskedasticity in the regression errors. On the other hand, Lee (2016) and

Fan and Lee (2019) extend the IVX methodology to quantile predictability, addressing an im-

portant and previously underdeveloped area. The IVX approach offers valuable insights for

addressing persistence in predictive regressions. Its implementation, however, involves selection

of a tuning parameter used to construct instruments, and the convergence rates depends on

how the instruments are formed. Lee (2016) provides a practical rule for choosing the tuning

parameter in the context of quantile predictive regressions, although the precise impact of this

choice on test performance remains an open question. As noted by Yang et al. (2021), the IVX

framework typically assumes a zero intercept in the autoregression, which may limit flexibility

in some applications.

The third strand of research applies the empirical likelihood (EL) method to predictive

regression settings. Originally introduced by Owen (1988, 1990), the method offers several de-

sirable advantages. It is nonparametric, achieves fast convergence rates, does not require the

choice of tuning parameters, and delivers test statistics with a standard chi-squared limiting dis-

tribution (Wilks’ theorem) regardless of the persistence level of the predictor. These properties

make it attractive for predictive regressions.

Building on these advantages, the EL approach was first applied successfully in predictive

mean settings by Zhu et al. (2014) and has since been extended to accommodate more com-

plex features. For example, Li et al. (2017) allow for autocorrelated errors, Liu et al. (2019)

incorporate first differences of the predictor, and Yang et al. (2021) permit lagged dependent

variables. Nevertheless, despite these advances, existing EL methods have not been extended to

accommodate mildly integrated or mildly explosive predictors, which are particularly relevant

in many applications in economics and finance; see, for example, Phillips et al. (2011). This

paper aims to fill this gap by extending the EL framework to predictive regressions that accom-

modate mildly integrated and mildly explosive predictors and relax regularity conditions, while

also incorporating distributional characteristics beyond the mean, in particular, quantile-based

inference.
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In applying the EL method, an important practical issue is the presence of an unknown

intercept in the predictive regression. One way to address this is through the sample-splitting

(large-lag differencing) approach proposed by Zhu et al. (2014), which facilitates straightforward

elimination of the intercept. We revisit and extend this approach by substantially relaxing the

restrictive regularity conditions commonly imposed in the existing EL literature such as i.i.d.

errors, and by accommodating additional persistence regimes for the predictor. However, in

mean predictive regression settings, sample splitting sacrifices efficiency because the effective

sample size is halved, and in the context of quantile predictive regressions, it is not applicable,

since the differenced score no longer yields pivotal EL constraints. To complement sample

splitting, we propose a new two-stage procedure for mean predictive regressions, motivated by

Cai and Wang (2014), and also apply it to quantile settings (where sample splitting is infeasible).

Our method retains the full sample by first estimating the intercept and then applying the EL

test to the intercept-adjusted series. While effective, this procedure can suffer from small-sample

distortions, especially under high persistence. We address these challenges by incorporating

gradually saturated, hyperbolic tangent-type, weight functions into the estimating equations to

stabilize the EL constraint and reduce higher-order bias. Simulation evidence shows that the

proposed EL procedures deliver competitive size and power across persistence regimes, with

notable gains in quantile predictability.

This paper makes several contributions to the existing literature. First, we develop an EL

framework that accommodates a wide spectrum of predictor persistence and delivers a unified

chi-square limiting theory, and apply it to both mean and quantile-based settings. Second, we

develop two complementary approaches for handling unknown intercepts: a sample-splitting

method under relaxed conditions, and a new two-stage procedure that improves efficiency and

enables quantile inference. Third, we propose practical remedies for finite sample bias: Bartlett-

type bias correction and gradually saturated weights, which enhance finite-sample performance

under strong persistence. These contributions provide robust inference tools for predictive

regressions under realistic persistence scenarios.

While our contributions advance the econometric literature, they also address issues of prac-

tical significance in finance and risk management. Testing predictability in a quantile setting is

particularly important and attractive for several reasons. From a financial perspective, investors’

decisions depend on more than just the mean and variance of returns; higher-order moments

and tail behavior play a critical role in portfolio choice and risk management (see Harvey and

Siddique, 2000; Dittmar, 2002; Cenesizoglu and Timmermann, 2012). From an econometric

perspective, quantile regressions are well suited for skewed or heavy-tailed distributions, a com-

mon feature of financial data, and are widely used in risk management applications, such as

Value-at-Risk estimation. Moreover, predictive quantile regressions avoid to a large extent the

theoretical challenges associated with mean regressions, such as order-imbalance issues when
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regressors are highly persistent; see, Phillips (2015).

An empirical application to U.S. equity returns demonstrates the practical utility of the

proposed framework in uncovering informative dynamics of predictability. We find that mean

predictability is modest and concentrated in a small set of economically relevant variables, such

as inflation and short-term interest rates, consistent with the mixed evidence reported in the

literature on mean predictability. By contrast, quantile-based inference reveals substantially

richer dynamics across the return distribution. In particular, predictors related to interest rates

and inflation exhibit stronger signals in the lower tails, while the default yield spread dominates

the upper tail. These results highlight the value of moving beyond mean-based approaches to

capture distributional features that are relevant for portfolio allocation, risk management, and

policy evaluation.

The rest of the paper is organized as follows. Sections 2 and 3 present the proposed methods

and asymptotic theory for mean and quantile predictability, respectively. Section 4 studies finite-

sample behavior and discusses practical remedies, including the choice of weights and Bartlett-

type bias correction. Sections 5 and 6 report simulation results and the empirical application,

respectively, and Section 7 concludes. All proofs are in the Appendix; the Internet Appendix

contains further simulation results. We take all stochastic processes considered in this paper

equipped with the same probability measure P. As for notations, we denote by =⇒,
st−→,

d−→

and
p−→ weak convergence in the Skorohod space D[0, 1], stable convergence in law, convergence

in distribution, and convergence in probability, respectively. The term stationarity means strict

stationarity, rather than weak stationarity. The mathematical expression for divergence in

probability; i.e., Xt
p→ +∞ as t→ ∞, is understood to mean P(Xt > r) → 1 for every r > 0.

2 Empirical Likelihood for Mean Predictability

We study a widely used predictive regression model for the conditional mean; see Phillips (2015)

and references therein. To fix ideas, let Yt denote the excess return on a broad market portfolio,

and let Xt−1 denote a lagged predictor such as the dividend-price ratio, earnings yield, or an

interest-rate variable. More generally, the setup can be applied to any scalar response and

possibly persistent predictor in a predictive regression.

The data-generating process for {(Yt, Xt)}t∈Z+ is given by

Yt = α+ βXt−1 + Ut, (1)

Xt = θ + ρXt−1 + εt, (2)

where Ut and εt are error terms satisfying regularity conditions that are specified shortly. The

slope coefficient β captures the predictive content of Xt−1 for Yt. The main object of interest
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is to test the null hypothesis of no mean predictability

H0 : β = 0. (3)

In this context, we develop an empirical likelihood (EL) approach that delivers statistical infer-

ence on β under a wide range of persistence scenarios for the predictor Xt. In what follows, we

first outline the EL formulation for mean regressions and then present its asymptotic properties

and implementation details.

We make the following assumptions about Ut and εt, which are sufficiently general to ac-

commodate a wide range of empirical features commonly observed in practice. The proposed

characterization allows for correlation between the error terms Ut and εt, thereby accommodat-

ing the potential embedded endogeneity in predictive regressions (Stambaugh, 1999; Campbell

and Yogo, 2006).

Assumption 1. The error terms (Ut, εt) are characterized as follows:

Ut = ϕVt + zt, and εt = Vt, (4)

where (zt, Vt) is a martingale difference with respect to the natural filtration Gt−1 = σ({zs, Vs; s ≤

t − 1}) and satisfies supt E(|Vt|2+q + |zt|2+q) < ∞ for some q > 0. Moreover, εt is either

conditionally homoscedastic, or conditionally heteroscedastic with conditional variance ς2t that

is stationary and satisfies E(ς−4
t ) < ∞. The process (zt, Vt) is α-mixing with rate α(ℓ) ≤ Cγℓ

for some γ ∈ (0, 1) and C > 0.

Remark 1. The above setup is notably weaker than what is commonly adopted in the predictive

regressions literature along several dimensions. First, we substantially relax the i.i.d. condition

on the error terms (Ut, Vt) often postulated in the empirical likelihood framework (see Cai

et al., 2015; Li et al., 2017; Liu et al., 2019; Yang et al., 2021). Second, the intercept θ in (2) is

allowed to be non-zero in the model. Lastly, we accommodate conditional heteroscedasticity in

the autoregressive error εt, following the conditions in Lee (2018), which are satisfied by many

GARCH-type processes. We note for later reference that the α-mixing assumption for (zt, Vt)

is only needed in Theorem 2. The required mixing rate can be relaxed to the polynomial rate

α(ℓ) ≤ Cℓ−κ with exponent κ > (2+ q)/(2+2q) without affecting the asymptotic theory of the

paper; see the proofs for details.

Assumption 2. Further to Assumption 1, with respect to Gt−1, the error term Ut is either

(i) Conditionally homoscedastic:

i.e. E(U2
t | Gt−1) = σ2U <∞,
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or

(ii) Conditionally heteroscedastic:

i.e. E(U2
t | Gt−1) = σ2t

where σ2t is Gt−1-measurable and is finite for all t, and, as T → ∞ satisfies

1

T

T∑
t=1

E(U2
t | Gt−1)

p→ σ2. (5)

Remark 2. Assumption 2(ii) is mild and flexible and does not restrict the conditional variance

of Ut to be stationary. Similar conditions appear in Assumption A2 of Cai et al. (2023). See also

Park (2002) for related discussions. The assumption accommodates various forms of nonstation-

arity, such as processes with structural breaks in the volatility. In many financial applications,

however, conditional volatility exhibits strong persistence and may behave as nearly integrated,

as documented by Jacquier et al. (1994). Such cases typically violate Assumption 2(ii). To

address this, Choi et al. (2016) propose a transformation that ensures a constant conditional

variance as in (5). Practitioners seeking to handle nearly integrated volatility may find their

procedure useful.

To capture a broad range of predictor persistence, we follow the standard practice of pa-

rameterizing the autoregressive coefficient in equation (2) as ρ = ρT , and let

ρT = 1 +
c

T a
,

where c and a ≥ 0 are some fixed constants; see Phillips (2015) and references therein. The

time-series properties of Xt are determined by the pair (c, a). In this paper, we consider the

following five cases:

C1 : |1 + c| < 1 and a = 0; Xt is stationary;

C2 : c < 0 and a ∈ (0, 1); Xt is mildly integrated;

C3 : c ̸= 0 and a = 1; Xt is nearly integrated;

C4 : c = 0; Xt is integrated;

C5 : c > 0 and a ∈ (0, 1); Xt is mildly explosive;

These cases encompass a wide range of potential regimes for Xt encountered in practice. No-

tably, within the context of EL methods, existing studies have not covered the mildly integrated
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C2 and mildly explosive C5 scenarios. By contrast, the IVX literature accommodates these

cases; see, for example, Phillips and Lee (2013). Together with our relaxed error assumptions

(Assumptions 1 and 2), this broadens the scope of EL-based inference for predictive regressions

while retaining its practical advantages, such as fast convergence rates, no tuning parameters,

and ease of implementation.

2.1 When α is Known

We first consider the case where the intercept α = α0 is known a priori. This assump-

tion simplifies the EL formulation and helps illustrate the core idea underlying the method.

Moreover, presenting results under this scenario provides a benchmark for the small-sample

performance of EL tests, as it reflects the advantage that can be gained when the intercept is

known or estimated with high precision.

Given the predictive regression (1), consider the following weighted estimating equation:

T∑
t=1

(Yt − α0 − βXt−1)w (Xt−1) = 0,

where w(·) is a measurable weight function. The weight function is introduced to accommodate

the potential nonstationarity ofXt. Under nonstationarity, Xt may diverge in probability, which

can invalidate standard EL limit theory unless appropriately weighted; see Ling (2005) and Zhu

et al. (2014).

Remark 3. The specification of w(·) is of both theoretical and practical importance. Later

in Section 4, we report some new findings that, to our knowledge, have not been previously

documented in the EL-based predictive regressions literature. A set of sufficient conditions

ensuring the validity of our limit theory is that the weight function is continuous, uniformly

bounded, and satisfies the saturation condition w(x)2 → 1 as |x| → ∞. Hereafter, we suppose

that the weight function we consider satisfies these conditions.

Some examples of such weight functions include

w1(x) =
x√

1 + x2
, w2(x) =

x

1 + |x|
, w3(x) = tanh(x/b), (6)

for b > 0. In the literature, the widely adopted practice has been to employ w1(x) (see, inter alia,

Zhu et al., 2014; Liu et al., 2019; Yang et al., 2021), which we will refer to as the conventional

weight hereafter. In Section 4, we discuss finite-sample issues that may arise in this context,

and propose alternative choices of weights, explaining how the issues can be alleviated, while

preserving the validity of the asymptotic theory.
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The empirical likelihood method proceeds as follows. For t = 1, 2, . . . , T , we define

Zt(β) = [Yt − α0 − βXt−1]w (Xt−1) .

The profile empirical likelihood function for β is given by:

LT (β) = sup

{
T∏
t=1

(Tπt) : πt ≥ 0 for all t,
T∑
t=1

πt = 1,
T∑
t=1

πtZt(β) = 0

}
, (7)

where the supremum is taken over the π’s. Accordingly, (7) defines a nonparametric analogue

of the likelihood ratio; see Owen (1988, 1990). Applying the method of Lagrange multipliers to

incorporate these constraints yields the empirical likelihood ratio statistic:

ℓT (β) = −2 logLT (β) = 2

T∑
t=1

log {1 + λZt (β)} ,

where the multiplier λ = λ(β) satisfies

T∑
t=1

Zt (β)

1 + λZt (β)
= 0.

Theorem 1. Suppose that the data is generated according to the process in equations (1)-(2),

with the predictive variable belonging to either class C1, C2, C3, C4, or C5. Suppose also that

Assumption 1 and either Assumption 2-(i) or 2-(ii) are satisfied. Then,

ℓT (β0)
d−→ χ2

1

as T → ∞, where β0 denotes the true value of β.

The theorem establishes the limit theory for the test statistic uniformly across cases C1−C5.

As a consequence, we would reject the hypothesis H0 : β = β0 at level ϱ if ℓT (β0) > χ2
1,1−ϱ.

Furthermore, an empirical likelihood confidence set for β can be obtained.

2.2 When α is Unknown: (i) Sample Splitting

Since the intercept α is typically unknown in practice, the conventional approach in the

EL literature is to eliminate it via large-lag differencing (i.e. sample-splitting), as originally

suggested by Zhu et al. (2014). This method partitions the sample and constructs differenced

observations using a sufficiently large lag, thereby removing the intercept from the regression.

While straightforward to implement, its main drawback is that it sacrifices efficiency because the

effective sample size is halved. Nevertheless, sample-splitting offers two advantages: it mitigates

the degree of nonstationarity in Xt through differencing and avoids the need to estimate the
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intercept. Below we extend the sample-splitting method by (i) accommodating mildly integrated

and mildly explosive predictors and (ii) substantially relaxing restrictive i.i.d. error assumptions.

In the next subsection, Section 2.3, we propose a new two-stage method as a complementary

approach that exploits the full sample. Both procedures are useful in their own right and are

studied within the same unified asymptotic EL framework.

Let m = ⌊T/2⌋, where ⌊·⌋ denotes the floor function, and define

Y ∗
t = Yt+m − Yt, X∗

t = Xt+m −Xt, and U∗
t = Ut+m − Ut

for t = 1, . . . ,m, hence sample-splitting. By construction, the intercept α cancels out and is

eliminated from the regression specification. Sample splitting preserves the property that under

nonstationarity X∗
t diverges in probability when Xt is, whereas simple first differencing need

not. Consequently, the empirical likelihood procedure via weighting can be carried over to the

differenced regression.

The data generating process can be written in terms of the differenced variables as

Y ∗
t = βX∗

t−1 + U∗
t , and X∗

t = ρX∗
t−1 + ε∗t (8)

for t = 1, . . . ,m, and ε∗t = εt+m − εt. In Theorem 2 below, we show that Wilks’ theorem

established in Theorem 1 continues to hold regardless of the degree of persistence of Xt.

The profile empirical likelihood function for β is given by:

L∗
T (β) = sup

{
m∏
t=1

(mπt) : π1 ≥ 0, . . . , πm ≥ 0,
m∑
t=1

πt = 1,
m∑
t=1

πtZ
∗
t (β) = 0

}
,

where Z∗
t (β) = [Y ∗

t − βX∗
t−1]w(X

∗
t−1). For example, if the conventional weight w1(·) in (6) is

used, then w(X∗
t−1) = X∗

t−1/
√
1 +X∗,2

t−1. As before, using the method of Lagrange multipliers

we have

ℓ∗T (β) = −2 logL∗
T (β) = 2

m∑
t=1

log {1 + λZ∗
t (β)},

where λ = λ(β) satisfies
m∑
t=1

Z∗
t (β)

1 + λZ∗
t (β)

= 0.

Theorem 2. Suppose that the data is generated according to the process in equations (1)-(2),

with the predictive variable belonging to either class C1, C2, C3, C4, or C5. Suppose also that

Assumption 1 and either Assumption 2-(i) or 2-(ii) are satisfied. Then,

ℓ∗T (β0)
d−→ χ2

1
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as T → ∞, where β0 denotes the true value of β.

As a consequence of Theorem 2, we would reject the hypothesis H0 : β = β0 at level ϱ if

ℓ∗T (β0) > χ2
1,1−ϱ. Furthermore, an empirical likelihood confidence set for β can be obtained.

Remark 4. The sample splitting approach avoids estimating the intercept and is less sensitive

to finite-sample distortions owing to its mitigated effect of predictor nonstationarity.

2.3 When α is Unknown: (ii) A Two-Stage Approach

We propose a new two-stage procedure as a complementary approach to sample splitting

for handling the unknown intercept, which has not been explored in the EL-based predictive

regressions literature to our knowledge. While sample splitting effectively halves the sample

and may entail an efficiency loss, the proposed two-stage approach retains the full sample for

inference and can yield higher efficiency.

The procedure first estimates the intercept α in the style of Cai and Wang (2014). Specifi-

cally, in the first step, we run a first order autoregression for Xt to obtain the residuals ε̂t. In

the second step, in view of equations (1)−(4), we regress Yt on ε̂t and Xt−1 to estimate α in

(1) via OLS. We denote the resulting estimate by α̃. Consequently, we redefine the dependent

variable as Ỹt = Yt − α̃, and apply the empirical likelihood method directly to the intercept-

adjusted observations Ỹt. Cai and Wang (2014) imply that α̃ is
√
T -consistent. Therefore, a

non-negligible asymptotic term may arise in the limit under the
√
T -scaling. We propose a

solution to address the issue by employing the centered weight in the two-stage approach:

wc(x) := w(x) − 1

T

T∑
s=1

w(Xs−1), (9)

in order to let the error term vanish. The centered weight function remains uniformly bounded,

and the sample average of (wc(Xt−1))
2 admits a finite probability limit. These are sufficient for

the limit theory to hold; see the proof for details. We let

Z̃t(β) =
[
Ỹt − βXt−1

]
· wc(Xt−1), (10)

and the profile empirical likelihood for β is given by

L̃T (β) = sup

{
T∏
t=1

(Tπt) : π1 ≥ 0, . . . , πT ≥ 0,

T∑
t=1

πt = 1,

T∑
t=1

πtZ̃t (β) = 0

}
.

The corresponding empirical likelihood ratio statistic is then

ℓ̃T (β) = −2 log L̃T (β) = 2
T∑
t=1

log
(
1 + λ̃Z̃t(β)

)
, (11)
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where λ̃ = λ̃(β) is the Lagrange multiplier satisfying:

T∑
t=1

Z̃t(β)

1 + λ̃Z̃t(β)
= 0. (12)

The intercept α̃ is treated as a nuisance parameter. The following theorem establishes that the

two-stage EL statistic satisfies Wilks’ theorem uniformly across cases C1−C5.

Theorem 3. Suppose that the data is generated according to the process in equations (1)-(2),

with the predictive variable belonging to either class C1, C2, C3, C4, or C5. Suppose also that

Assumption 1 and either Assumption 2-(i) or 2-(ii) are satisfied. Then,

ℓ̃T (β0)
d−→ χ2

1

as T → ∞, where β0 denotes the true value of β.

Clearly, Theorem 3 implies that we would reject the hypothesis H0 : β = β0 at level ϱ if

ℓ̃T (β0) > χ2
1,1−ϱ. Furthermore, an empirical likelihood confidence set for β can be obtained.

Remark 5. The two-stage method uses the full sample for inference, thereby circumventing the

efficiency loss in sample splitting. Section 4 discusses finite-sample issues that may arise in the

two-stage method and proposes remedies via a bias correction and alternative weight choices.

3 Empirical Likelihood for Quantile Predictability

We now extend the EL framework to predictive quantile regressions. Unlike the mean re-

gression setting considered in Section 2, quantile regressions allow predictive relationships to

vary across different parts of the conditional distribution, providing a richer characterization of

return dynamics and tail risk; see, for example, Gonzalo and Pitarakis (2012). While empirical

likelihood has been widely applied to mean predictive regressions, its adaptation to quantile

settings poses additional challenges because the estimating equations differ and involve non-

smooth, indicator-based, score functions. In what follows, we outline the EL formulation for

quantile regressions, establish its asymptotic properties under the persistence scenarios intro-

duced earlier, and discuss implementation details.

For a given quantile level τ ∈ (0, 1), let QYt(τ | Gt−1) denote the conditional τ -quantile of

Yt given Gt−1 = σ({zs, Vs; s ≤ t− 1}). Following Lee (2016), Fan and Lee (2019), and Cai et al.

(2023), we consider the specification:

QYt(τ | Gt−1) = ατ + βτXt−1, (13)

where Xt−1 is the lagged predictor, with its data generating process defined in (2). The quantile
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innovation is defined as

Ut,τ := Yt −QYt(τ | Gt−1). (14)

A key feature of this model is that the coefficients ατ and βτ vary across quantile levels, allowing

for a more informative assessment of predictor effects and tail risk. This flexibility is particularly

important for capturing heterogeneity in predictive relationships, especially in the tails. The

object of interest is to test the null hypothesis of no quantile predictability:

H0 : βτ = 0

for some τ , which is similar to (3) for the mean model. As in the mean regression setting,

we distinguish between two scenarios for the intercept ατ : known and unknown. Section 3.1

presents the EL formulation when ατ is known, which serves as a benchmark and illustrates

the core idea of the method. When ατ is unknown, large-lag differencing alters the conditional

quantile structure, and the resulting EL constraints become non-pivotal, in the sense that the

variance of the quantile score depends on an unknown conditional joint distribution. Conse-

quently, the sample-splitting approach is not applicable in this framework; see Section 3.2 for

details. Instead, we adopt the two-stage procedure introduced earlier for mean regressions in

the quantile setting. This is the main reason why we propose the two-stage estimation proce-

dure for mean regressions in Section 2.3. We continue to accommodate the persistence regimes

described in cases C1−C5. We also maintain Assumption 1 to keep the exposition focused and

the framework unified, although the quantile results only rely on the relevant parts.

3.1 When ατ is Known

We first consider the case where the intercept ατ = ατ,0 is known a priori. As before, this

scenario serves as a benchmark, illustrating the core idea of the EL approach and representing

the potential size and power the test can achieve when the intercept is known or estimated with

high precision.

Given the predictive model specified in (13), similar to the empirical likelihood approach

for quantile regression as in Otsu (2008) and Wang and Zhu (2011), we consider the following

weighted estimating equation:
T∑
t=1

ξt,τ (βτ ) = 0,

where ξt,τ (βτ ) = ψτ (Yt − ατ,0 − βτXt−1)w(Xt−1) and ψτ (u) = τ − 1(u < 0) is the quantile

score, which is a generalized derivative of the check function ϑ(u) = u(τ − 1(u < 0)). Then, the
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profile empirical likelihood function for βτ is

LT,τ (βτ ) = sup

{
T∏
t=1

(Tπt) : π1, . . . , πT ≥ 0,

T∑
t=1

πt = 1,

T∑
t=1

πtξt,τ (βτ ) = 0

}
.

Consequently, the empirical likelihood ratio statistic is given by:

ℓT,τ (βτ ) = −2 logLT,τ (βτ ) = 2
T∑
t=1

log{1 + λτξt,τ (βτ )},

where the multiplier λτ = λτ (βτ ) satisfies

T∑
t=1

ξt,τ (βτ )

1 + λτξt,τ (βτ )
= 0.

Remark 6. By definition, the quantile innovation Ut,τ in (14) satisfies P(Ut,τ < 0|Gt−1) = τ .

Hence, ψτ (Ut,τ ) = τ − 1{Ut,τ < 0} obeys

E [ψτ (Ut,τ )|Gt−1] = 0, and E
[
ψτ (Ut,τ )

2|Gt−1

]
= τ(1− τ),

so that ψτ (Ut,τ ) forms a martingale difference sequence with respect to Gt−1. Therefore, we can

show that the EL constraints remain valid, and the EL procedure developed for mean regressions

extends naturally to the quantile setting.

Theorem 4. Suppose the data is generated according to the process in equations (13) and (2),

and the predictive variable belongs to either class C1, C2, C3, C4, or C5. Suppose also that

Assumption 1 holds. Then, for each τ ∈ (0, 1) we have

ℓT,τ (βτ,0)
d−→ χ2

1

as T → ∞, where βτ,0 denotes the true value of βτ .

From Theorem 4, one can see that for each τ ∈ (0, 1) we would reject the hypothesis

H0 : βτ = βτ,0 at level ϱ if ℓT,τ (βτ,0) > χ2
1,1−ϱ. Furthermore, an empirical likelihood confidence

set for βτ can be obtained.

3.2 When ατ is Unknown

We now turn to the case where the intercept ατ is unknown. As discussed earlier, the

conventional sample-splitting approach used in the EL literature for mean regressions is not

directly applicable in the quantile setting. This phenomenon is similar to the case that the

profile least squares method for semiparametric mean regressions is not directly applicable

to semiparametric quantile models; see, for example, Cai and Xiao (2012) for details. What
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happens is that large-lag differencing modifies the conditional quantile structure and leads to

estimating equations whose variance depends on an unknown conditional joint distribution. To

see this, as before, write m = ⌊T/2⌋ and define Y ∗
t = Yt+m − Yt and X∗

t = Xt+m − Xt for

t = 1, . . . ,m. Let U∗
t,τ = Ut+m,τ −Ut,τ , where Ut,τ := Yt−QYt(τ | Gt−1). The conditional second

moment of the score E(ψτ (U
∗
t,τ )

2|Gt−1) depends on P(U∗
t,τ < 0|Gt−1), where

P
(
U∗
t,τ < 0|Gt−1

)
=

∫∫
1{u′ < u} dFUt+m,τ ,Ut,τ |Gt−1

(u′, u),

and FUt+m,τ ,Ut,τ |Gt−1
is the conditional joint distribution function of Ut+m,τ and Ut,τ . Thus,

the variance of the differenced score depends on the unknown conditional joint distribution.

Furthermore, ψτ (U
∗
t,τ ) is no longer a martingale difference. The resulting EL constraint is hence

not pivotal, implying that sample-splitting cannot be applied in the quantile framework.

Therefore, we instead adapt the two-stage procedure introduced earlier for mean regressions

to the quantile setting. Due to the presence of quantile score, we additionally assume the

following local smoothness condition around the τ -th conditional quantile. Along with weight

centering, the assumption keeps the EL statistic pivotal, yielding the desired limit result. The

condition is satisfied by some regime-switching models and time-varying monotone distortions.

Similar positivity and Lipschitz-type conditions on the conditional density at the quantile are

assumed in the quantile regression literature; see, for example, Assumption 3.1 of Otsu (2008)

and Condition S.2 of Belloni et al. (2019).

Assumption 3. There exist some constants fτ (0) ∈ (0,∞), Lτ <∞ and ε0 > 0 such that for all

t, the conditional density ft,τ (0|Gt−1) = fτ (0) ∈ (0,∞), we have |ft,τ (u | Gt−1)− ft,τ (0|Gt−1)| ≤

Lτ |u| for all |u| ≤ ε0.

Now, we consider the quantile estimator as in Koenker and Bassett (1978) and Lee (2016):

(
α̃τ , β̃τ

)′
:= argmin

α,β

T∑
t=1

ϑτ (Yt − ατ − βτXt−1) ,

and define

ξ̃t,τ (βτ ) = ψτ (Yt − α̃τ − βτXt−1)w
c(Xt−1).

where wc(·) is the centered weight defined in (9) and ϑ(u) = u(τ − 1(u < 0)). The profile

empirical likelihood function for βτ is then

L̃T,τ (βτ ) = sup

{
T∏
t=1

(Tπt) : π1, . . . , πT ≥ 0,
T∑
t=1

πt = 1,
T∑
t=1

πtξ̃t,τ (βτ ) = 0

}
.
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Consequently, the empirical likelihood ratio statistic is given by:

ℓ̃T,τ (βτ ) = −2 log L̃T,τ (βτ ) = 2

T∑
t=1

log{1 + λτ ξ̃t,τ (βτ )},

where the multiplier λτ = λτ (βτ ) satisfies

T∑
t=1

ξ̃t,τ (βτ )

1 + λτ ξ̃t,τ (βτ )
= 0. (15)

Theorem 5. Suppose the data is generated according to the process in equations (13) and (2),

and the predictive variable belongs to either class C1, C2, C3, C4, or C5. Suppose also that

Assumption 1 and 3 hold. Then, for each τ ∈ (0, 1) we have

ℓ̃T,τ (βτ,0)
d−→ χ2

1

as T → ∞, where βτ,0 denotes the true value of βτ .

As a consequence of Theorem 5, for each τ ∈ (0, 1) we would reject the hypothesis H0 : βτ =

βτ,0 at level ϱ if ℓ̃T,τ (βτ,0) > χ2
1,1−ϱ. Furthermore, an empirical likelihood confidence set for βτ

can be obtained.

4 Bias Correction and Weight Choices

This section documents a potential finite-sample bias in the proposed two-stage EL method.

We explain why the bias can be particularly pronounced when the regressor is highly persistent.

As we show below, this is so even though EL ratio statistic admits the Wilks-type chi-squared

limit as in the previous sections. The Taylor expansion of (12) (equivalently, in the quantile

case, (15)) yields

0 =
1

T

T∑
t=1

Z̃t − λ̃
1

T

T∑
t=1

Z̃2
t + λ̃2

1

T

T∑
t=1

Z̃3
t − λ̃3

1

T

T∑
t=1

Z̃4
t︸ ︷︷ ︸

=: ζ

+ · · · .

Since λ̃ = Op(T
−1/2), it follows that

λ̃ =
1
T

∑T
t=1 Z̃t

1
T

∑T
t=1 Z̃

2
t

+
ζ

1
T

∑T
t=1 Z̃

2
t

=
1
T

∑T
t=1 Z̃t

1
T

∑T
t=1 Z̃

2
t

+Op

(
1

T

)
.
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Table 1. A simulation result for two-stage EL

and the conventional weight Xt−1/
√
1 +X2

t−1

c saturation skewness kurtosis q/T

-50 0.088 -0.0125 3.506 0.007
-20 0.240 -0.169 4.278 0.009
0 0.968 7.900 93.431 0.104
2 0.968 7.880 91.935 0.101

By Taylor expansion to log(1 + λ̃Z̃t) in (11), it follows that

ℓ̃T (β0) = 2λ̃

T∑
t=1

Z̃t − λ̃2
T∑
t=1

Z̃2
t +

2λ̃3

3

T∑
t=1

Z̃3
t − λ̃4

2

T∑
t=1

Z̃4
t + · · ·

=

(
1√
T

∑T
t=1 Z̃t

)2
1
T

∑T
t=1 Z̃

2
t

+ fT (ζ) + op(1), (16)

where fT (ζ) represents the influence of higher-order terms involving the third and fourth mo-

ments. Equation (16) delivers the chi-squared limit under standard regularity conditions, hence

our asymptotic theorems in the previous sections are valid. However, in finite samples the

higher-order terms may be non-negligible, leading to size distortions when the distribution of

Z̃t exhibits pronounced skewness and kurtosis.

4.1 Bartlett Correction

Writing E(fT (ζ)) = q/T , under restrictive conditions including the i.i.d. of Z̃t, DiCiccio

et al. (1991) and Liu and Chen (2010) show that the Bartlett constant q satisfies

q =
kurtosis(Z̃t)

2
− skewness(Z̃t)

2

3
. (17)

The finite-sample bias can become pronounced when Xt is highly persistent, because skewness

and kurtosis of Z̃t := Utw
c(Xt−1) = Ut · (w(Xt−1) − w(Xt−1)) may be large as we explain

below. As an example, Table 1 reports the sample skewness and kurtosis of Z̃t when the

conventional weight w1(Xt−1) = Xt−1/(1 +X2
t−1)

1/2 is used as usual. For illustration we also

report a saturation measure, defined as mean(|w(Xt−1)| > 0.95). The data are generated from

the specification in equation (2), with θ = 0 and ρT = 1 + c/T .

Table 1 shows that in highly persistent regimes such as integrated (c = 0) or mildly explosive

(c = 2) predictors, skewness and kurtosis can be very large, leading to non-negligible values of

q/T . Consequently, the test statistic (16) is inflated and finite-sample size control becomes

unreliable. The mechanism is intuitive: if Xt is highly persistent, whenever it drifts from
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zero it can remain large for long stretches. If the weight w(·) saturates quickly toward ±1,

then |w(Xt−1)| remains close to 1 for extended periods, producing a distribution with long

runs near saturation and occasional extreme deviations when large shocks occur. If Xt drifts

predominantly in one direction, the distribution becomes asymmetric (skewed), and long runs

near saturation combined with rare jumps inflate the fourth moment (kurtosis).

Remark 7. While this phenomenon is severe for the two-stage method in 2.3, it is not pro-

nounced under sample splitting since differencing mitigates the degree of persistence. Note that

when θ ̸= 0 and is large, the phenomenon can be exacerbated because Xt is shifted away from

zero even initially, although a small deviation from 0 does not affect the overall performance

significantly, as expected from the saturation mechanism. Having a large value of non-zero ϕ

also worsens the problem since Ut = ϕVt + zt; an additional component driven by Vt appears,

introduces additional dependence between the EL score and the persistent regressor, amplifying

size distortion. See Remark 9 in Section 5 for further discussion.

Since the Bartlett constant q involves population quantities, it needs to be estimated for

a bias correction. However, under nonstationary and dependent scores, the estimation of q is

not straightforward, and the true Bartlett constant may depend on the persistence of Xt and

quantities beyond marginal skewness and kurtosis, so a fully reliable estimator is nontrivial. As

a heuristic, we propose to consider a “naive” Bartlett bias correction:

q̂ :=
̂kurtosis(Z̃t)

2
−

̂skewness(Z̃t)
2

3
and ℓ̃T (β0)

naive :=
ℓ̃T (β0)

1 + q̂/T
. (18)

Here, we need to emphasize that the correction is a heuristic; our simulations (See Section 5)

indicate that (18) can lead to a modest improvement in finite-sample size. Developing a more

reliable estimator of the Bartlett constant in highly persistent regimes would be valuable, but we

leave it for future work. See Kitamura et al. (2004) and references therein for more discussions.

4.2 Weight Choice

Beyond the heuristic Bartlett bias correction we discussed above, we propose modifying

the weight function as a more direct and practically effective way to mitigate the finite-sample

distortions. The choice of w(·) directly shapes the higher-order moments of the EL score and

can substantially improve size control in highly persistent regimes. In particular, we find that

moving beyond the conventional weight functions commonly used in the EL literature yields

marked finite-sample improvements, which is confirmed by the simulation results in Section 5

(Table 3). The core idea is to let w(·) approach ±1 less rapidly than the conventional weight, and

hence prevents the high moments of the EL score from being inflated. Figure 1 compares three

types of weight functions introduced in (6). The hyperbolic tangent weights w3(·) approach
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Figure 1. Plots of three weight functions

±1 more gradually than w1(·), which has served as the de facto conventional choice in the

literature; see, inter alia, Zhu et al. (2014), Yang et al. (2021). Consequently, they mitigate

clustering near saturation, reduce the inflated skewness and kurtosis, and may substantially

improve finite-sample behavior, while preserving the validity of the asymptotic theory.

Table 2 extends the results in Table 1, and reports the summary statistics of different weight

functions. They confirm the visual impression from Figure 1. In particular, conventional weights

exhibit high saturation and extreme kurtosis when the predictor is persistent, while hyperbolic

tangent weights substantially reduce such effects. For example, when c = 0 (unit root), satu-

ration drops from 96.8% for the conventional weight (w1(·)) to 4% for the hyperbolic tangent

weight with b = 10 (i.e. w3(·)). These findings motivate the use of hyperbolic tangent weights

as a practical alternative to the conventional choice. They mitigate the inflation of higher-order

moments that drive finite-sample bias in the two-stage EL when X is highly persistent.

Remark 8. The choice of the scale b in w(x) = tanh(x/b) is an interesting problem in practice.

Setting a larger b delays saturation and reduces the clustering of w(Xt−1) near ±1 in highly per-

sistent regimes, thereby stabilizing the higher-order moments of the EL score. In finite samples,

a less rapidly saturating weight also preserves more variation in the centered weight wc(Xt−1).

However, taking b excessively large provides little additional benefit. In our sensitivity analysis

over b = 1, . . . , 20 (available upon request), rejection probabilities reduce toward the nominal

level as b increases, but approach a plateau around b ≈ 8–11 when X is highly persistent, e.g.

c = 0, after which the empirical sizes drift upward for larger b. Also, the improvement in power

becomes negligible once b reaches moderately large (e.g., b ≥ 5). Intuitively, an excessively large

b makes tanh(x/b) nearly linear over a wide range of values, weakening the intended saturation-

based stabilization in the EL procedure. In the spirit of choosing tuning parameters for testing
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Table 2. Summary statistics of different weight functions

c Xt−1/
√

1 +X2
t−1 Xt−1/(1 + |Xt−1|) tanh(Xt−1/10)

Sat. Skew. Kurt. Sat. Skew. Kurt. Sat. Skew. Kurt.

-50 0.088 -0.125 3.506 0.000 -0.136 3.428 0.000 -0.826 7.293
-20 0.240 -0.169 4.278 0.000 -0.137 4.408 0.000 -0.259 7.764
0 0.968 7.900 93.431 0.384 2.504 30.696 0.042 0.948 21.448
2 0.968 7.880 91.935 0.724 2.554 30.607 0.073 1.371 29.493

Note: The table reports Monte Carlo averages of skewness (Skew.) and kurtosis (Kurt.) of the centered weight

Z̃t and those of saturation (Sat.; defined as P(|w(Xt−1)| > 0.95) under different persistence levels (c). Summary
statistics are reported for three weight specifications. Data for Xt are generated from the AR(1) specification in
equation (2), with ρT = 1+ c/T , θ = 0, and innovations drawn from a standard normal distribution. Results are
based on 10,000 replications with sample size T = 250.

by balancing size control and power (see, for example Gao and Gijbels (2008)), we adopt b = 10,

the middle value of the observed plateau in the sensitivity analysis, as a default. We remark

that finite-sample results are very similar for nearby choices of b.

5 Simulation Study

This section examines the small-sample properties of the EL tests proposed in Sections

2 and 3. We specify the simulation setup and present evidence on the performance of the

proposed methods under different persistence regimes, comparing them to existing approaches.

To preserve space and maintain focus, we report here results only for both predictive mean

and quantile regressions under homoscedastic errors. The simulation setup and results for

heteroscedastic errors, which lead to qualitatively similar conclusions, are fully provided in the

supplementary material (Internet Appendix).

5.1 Simulation Setup

In this subsection, we use Monte Carlo simulations to investigate the finite sample behavior

of the proposed EL methods. For the mean regression experiments, we generate the data from

the process defined in equations (1) and (2), with α = 0.2, ϕ = 0.05, and c ∈ {−50,−20, 0, 2},

corresponding to stationary, local-to-unity, unit root, and mildly explosive predictors. The

autoregressive process in equation (2) is initialized at X0 = 0, following the usual convention.

The vector (zt
′, V ′

t )
′ is drawn from a bivariate standard normal distribution, and we set εt = Vt

and Ut = ϕVt+ zt as defined in (4), with ϕ ∈ {−0.5,−0.20, 0}.1 For quantile regressions, we use

the same simulation setup for Xt, εt, and Ut, but generate Yt from

Yt = ατ + βτXt−1 + Ut,τ ,

1We also considered the cases of ϕ ∈ {0.5, 0.2}, but the results were qualitatively similar to those for ϕ ∈
{−0.5,−0.2}. Hence, we omit them for brevity here; those results are available upon request.
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Table 3. Finite-sample sizes for predictive mean regressions

ϕ c Conventional Conventional Hyperbolic tangent IVX
weights without weights with weights with

Bartlett correction Bartlett correction Bartlett correction

EL1 EL2 EL3 EL1 EL2 EL3 EL1 EL2 EL3

0 -50 0.0533 0.0531 0.0518 0.0520 0.0508 0.0513 0.0538 0.0532 0.0543 0.0536
-20 0.0513 0.0526 0.0519 0.0508 0.0515 0.0506 0.0524 0.0498 0.0523 0.0539
0 0.0494 0.0572 0.0804 0.0490 0.0558 0.0739 0.0483 0.0545 0.0463 0.0469
2 0.0491 0.0546 0.0994 0.0486 0.0526 0.0911 0.0486 0.0518 0.0512 0.0471

-0.2 -50 0.0525 0.0522 0.0526 0.0515 0.0506 0.0520 0.0526 0.0525 0.0545 0.0540
-20 0.0502 0.0521 0.0540 0.0496 0.0505 0.0527 0.0526 0.0512 0.0541 0.0530
0 0.0484 0.0556 0.0851 0.0480 0.0544 0.0785 0.0498 0.0537 0.0519 0.0460
2 0.0492 0.0521 0.1040 0.0485 0.0510 0.0945 0.0498 0.0511 0.0549 0.0473

-0.5 -50 0.0501 0.0516 0.0537 0.0490 0.0501 0.0516 0.0524 0.0518 0.0561 0.0516
-20 0.0502 0.0507 0.0576 0.0495 0.0494 0.0557 0.0543 0.0505 0.0579 0.0531
0 0.0492 0.0544 0.1068 0.0484 0.0530 0.1007 0.0546 0.0567 0.0766 0.0439
2 0.0495 0.0524 0.1353 0.0488 0.0513 0.1245 0.0551 0.0558 0.0780 0.0450

Note. The table reports the empirical size (i.e., the probability of incorrectly rejecting the null hypothesis
of no predictability). Results are shown for: EL1 (the EL method, where α is treated as known), EL2
(sample-splitting EL approach in Section 2.2), EL3 (the two-stage EL procedure using the projection method
in Section 2.3), and IVX (benchmark test of Kostakis et al. (2015) and Phillips and Lee (2016)). All tests are
conducted at the 5% nominal significance level. EL tests are conducted using either the conventional weight

function Xt−1/(1 +X2
t−1)

1/2
, with and without the Bartlett correction in Section 4.1, or the tanh function

tanh(Xt−1/10) with Bartlett correction. The simulation design accounts for various levels of persistence in
the predictor Xt through the localizing constant c ∈ {−50,−20, 0, 2}, and endogeneity through the innova-
tion correlation parameter ϕ ∈ {−0.5,−0.2, 0}. θ = 0.05. Rejection probabilities are based on 10,000 Monte
Carlo simulations and sample size T = 250. For detailed description of the simulation design, please see Section 5.

with Ut,τ = Ut−QUt(τ | Gt−1), where QUt(τ | Gt−1) denotes the conditional τ -quantile of Ut. All

tests considered are conducted under the null hypothesis of no predictability at the 5% nominal

level. We report results for T = 250 based on 10,000 Monte Carlo replications. This design

allows us to assess the impact of persistence and endogeneity (captured by c and ϕ, respectively)

on the size and power of the proposed EL tests.

5.2 Small-Sample Properties for Mean Predictability Tests

First, we evaluate the small-sample properties of the EL-based tests for mean predictability.

Table 3 and Figure 2 summarize the rejection probabilities and power plots of four tests: (i) the

EL procedure with the intercept α treated as known (EL1), (ii) the sample-splitting empirical

likelihood approach studied in Section 2.2 (EL2), (iii) the two-stage EL procedure (EL3) in

Section 2.3, where α is first estimated and removed using the consistent projection method in

the style of Cai and Wang (2014), and (iv) the IVX test of Kostakis et al. (2015) and Phillips

and Lee (2016), reported for benchmarking.

Several interesting conclusions emerge from these simulation results shown in Table 3. First,

the finite-sample remedies in Section 4, especially the hyperbolic tangent weighting, are highly

effective in improving size control in the highly persistent regimes relative to the conventional
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weighting used in the EL literature. When the endogeneity level ϕ is mild, at the 5% nominal

level, size is overall well calibrated for all procedures after finite-sample remedies. For EL3,

this reflects the EL constraint being well behaved and the intercept being estimated precisely

enough in the two-stage approach, so that the resulting score has near-zero mean under the null.

In the stationary (c = −50) and local-to-unity (c = −20) cases, the power of EL3 is also close

to the known-intercept upper bound (EL1), indicating that the full-sample two-stage procedure

preserves most of the efficiency of the oracle test. The sample-splitting approach (EL2) also

performs well and is correctly sized across all persistent levels. However, as expected, it is less

powerful because splitting sacrifices information and effective sample size. Relative to IVX, EL3

is typically competitive. In the stationary and local-to-unity cases, the two-stage power curve

rises at nearly the same rate as EL1 and often sits above IVX, especially near the null, where

local alternatives are weak.

In the unit-root case (c = 0), the two-stage procedure remains competitive in power relative

to IVX when endogeneity is low, and its curve converges to one slightly faster than IVX for

values of β close to the null. Nevertheless, the gap between EL3 and EL1 becomes more visible,

reflecting the impact of estimating α. For mildly explosive predictors (c = 2), the IVX curve

tends to converge slightly faster than the two-stage EL, although the difference is somewhat

marginal.

Remark 9. Under strong endogeneity (ϕ = −0.5), EL3 is mildly oversized when the predictor is

highly persistent, even with the gradually saturating hyperbolic tangent weights. This behavior

is expected and is consistent with the construction of EL3: our two-stage adjustment removes the

intercept but does not purge the innovation-driven component in the regression error, as noted

in Remark 7. When ϕ ̸= 0, the EL score in (10) inherits the influence of the term ϕVt(= ϕεt),

which is correlated with the centered weight. This correlation can lead to stronger dependence

and heavier tails in the moment condition, inflating the finite-sample rejection probability.

As a remedy for this mild distortion, we consider two approaches and conduct additional

diagnostic simulations. First, an “oracle purging” that removes ϕVt(= ϕεt) using the true

innovation employs the residual Yt − α̃ − ϕ̃εt in the EL score. This eliminates the size distor-

tion across persistence classes, confirming that the remaining over-rejection is driven by the

innovation-correlated component. Second, a “feasible purging” based on the estimated innova-

tion can be proposed, where Yt− α̃− ϕ̃ε̂t is used as the residual. This ameliorates the over-sizing

by construction, but may introduce size distortions in stationary or near-stationary regimes due

to estimation error in the autoregressive coefficient ρ (which vanishes as the sample size grows,

but slowly than the highly persistent cases). These simulation results are reported in the In-

ternet Appendix (Section IA2). Developing a feasible purging scheme that further reduces this

estimation-error effect in finite samples is left for future research.
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Figure 2. Finite-sample size and power plots for mean predictability tests with homoscedastic
errors and tanh-based weight

Note. The figure summarizes rejection probabilities (y-axis) for tests of the null hypothesis of no predictive

ability in the mean regression model (1). Results are shown for: EL1 (the EL method, where α is treated as

known; Section 2.1), EL2 (sample-splitting EL approach in Section 2.2), EL3 (the two-stage EL procedure using

the projection method in Section 2.3, and IVX (benchmark test of Kostakis et al. (2015) and Phillips and Lee

(2016)). All EL tests are conducted using the hyperbolic tangent weight function w(Xt−1) = tanh(Xt−1/10)

and applying the Bartlett correction. The x-axis represents true values of the slope coefficient β, with β = 0

corresponding to empirical size. The red dashed line marks the 5% nominal level. Rejection probabilities are

based on 10,000 Monte Carlo simulations. Results are reported for sample size T = 250, θ = 0.05, innovation

correlation parameter ϕ ∈ {−0.5,−0.2, 0}, and localizing constant c ∈ {−50,−20, 0, 2}. Results under different

settings including heteroscedastic errors are similar, and can be found in the Internet Appendix.

Overall, the empirical likelihood procedures exhibit competitive small-sample performance

for mean predictability across the persistence regimes considered. In stationary and local-to-

unity cases, both procedures deliver accurate size control, while EL3 achieves higher power

by exploiting the full sample. As persistence increases toward unit-root and mildly explosive

settings, EL2 continues to provide steady calibration, whereas EL3 often remains competitive

with IVX in terms of power, though it may exhibit mild over-rejection under strong endogene-

ity as discussed above. Taken together, the evidence suggests that when endogeneity is mild

or controlled, the two-stage method (EL3) delivers near-oracle power with good size control,

whereas under strong endogeneity and high persistence, sample splitting (EL2) can serve as a

useful method that provides a stable calibration.
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Table 4. Finite-sample sizes for predictive quantile regressions

c τ ϕ = 0 ϕ = −0.2 ϕ = −0.5

EL1 EL3 IVX EL1 EL3 IVX EL1 EL3 IVX

-50 0.1 0.0578 0.0670 0.0665 0.0571 0.0692 0.0680 0.0543 0.0654 0.0634
0.2 0.0530 0.0609 0.0521 0.0529 0.0599 0.0519 0.0522 0.0608 0.0422
0.3 0.0524 0.0589 0.0453 0.0519 0.0590 0.0448 0.0482 0.0555 0.0445
0.4 0.0520 0.0543 0.0410 0.0498 0.0546 0.0411 0.0489 0.0551 0.0390
0.5 0.0486 0.0524 0.0391 0.0480 0.0520 0.0372 0.0499 0.0560 0.0362
0.6 0.0500 0.0538 0.0397 0.0486 0.0526 0.0394 0.0466 0.0529 0.0363
0.7 0.0514 0.0537 0.0458 0.0509 0.0530 0.0476 0.0474 0.0563 0.0398
0.8 0.0506 0.0555 0.0535 0.0481 0.0568 0.0491 0.0505 0.0552 0.0480
0.9 0.0595 0.0692 0.0702 0.0606 0.0652 0.0640 0.0576 0.0645 0.0603

-20 0.1 0.0541 0.0673 0.0671 0.0540 0.0653 0.0691 0.0538 0.0624 0.0640
0.2 0.0512 0.0569 0.0553 0.0544 0.0603 0.0538 0.0520 0.0631 0.0448
0.3 0.0513 0.0571 0.0480 0.0504 0.0564 0.0471 0.0511 0.0580 0.0422
0.4 0.0509 0.0531 0.0461 0.0472 0.0533 0.0451 0.0513 0.0547 0.0379
0.5 0.0476 0.0493 0.0440 0.0478 0.0515 0.0400 0.0487 0.0550 0.0348
0.6 0.0511 0.0542 0.0390 0.0498 0.0543 0.0405 0.0461 0.0549 0.0369
0.7 0.0505 0.0528 0.0453 0.0480 0.0555 0.0450 0.0509 0.0579 0.0406
0.8 0.0490 0.0553 0.0528 0.0516 0.0553 0.0506 0.0500 0.0574 0.0430
0.9 0.0572 0.0670 0.0675 0.0547 0.0638 0.0676 0.0505 0.0631 0.0630

0 0.1 0.0532 0.0525 0.1803 0.0520 0.0533 0.1717 0.0526 0.0593 0.1158
0.2 0.0483 0.0502 0.1588 0.0505 0.0467 0.1492 0.0529 0.0558 0.0849
0.3 0.0460 0.0452 0.1487 0.0453 0.0470 0.1361 0.0503 0.0553 0.0787
0.4 0.0460 0.0439 0.1466 0.0457 0.0429 0.1297 0.0512 0.0568 0.0777
0.5 0.0496 0.0423 0.1430 0.0471 0.0449 0.1287 0.0488 0.0584 0.0720
0.6 0.0459 0.0436 0.1416 0.0487 0.0477 0.1283 0.0484 0.0611 0.0715
0.7 0.0456 0.0475 0.1426 0.0466 0.0465 0.1357 0.0499 0.0608 0.0682
0.8 0.0484 0.0456 0.1567 0.0493 0.0478 0.1483 0.0504 0.0634 0.0801
0.9 0.0492 0.0582 0.1745 0.0495 0.0563 0.1754 0.0536 0.0659 0.1061

2 0.1 0.0513 0.0647 0.2130 0.0496 0.0645 0.2087 0.0530 0.0660 0.1726
0.2 0.0488 0.0520 0.1921 0.0511 0.0519 0.1877 0.0545 0.0618 0.1375
0.3 0.0477 0.0486 0.1791 0.0475 0.0483 0.1676 0.0527 0.0586 0.1267
0.4 0.0487 0.0492 0.1684 0.0482 0.0468 0.1677 0.0488 0.0608 0.1176
0.5 0.0495 0.0441 0.1652 0.0464 0.0467 0.1577 0.0507 0.0652 0.1158
0.6 0.0470 0.0464 0.1698 0.0476 0.0513 0.1581 0.0490 0.0622 0.1193
0.7 0.0456 0.0434 0.1730 0.0465 0.0451 0.1679 0.0505 0.0628 0.1214
0.8 0.0476 0.0507 0.1853 0.0481 0.0508 0.1831 0.0513 0.0612 0.1319
0.9 0.0488 0.0598 0.2167 0.0485 0.0642 0.2124 0.0512 0.0782 0.1707

Note: The table reports the empirical size (i.e., the probability of incorrectly rejecting the null hypothesis of
no predictability) in the quantile regression model (13), for a selected set of quantiles τ ∈ {0.1, 0.2, . . . , 0.9}.
Results are shown for EL1 (the EL method, where the intercept ατ is treated as known; Section 3.1), EL3 (the
two-stage EL procedure in Section 3.2), and IVX (benchmark test of Lee (2016)). All tests are conducted at
the 5% nominal significance level. EL tests are conducted using tanh-based weights and applying the Bartlett
correction. The simulation design accounts for various levels of persistence in the predictor Xt through the
localizing constant c ∈ {−50,−20, 0, 2}, θ = 0.05, and endogeneity through the innovation correlation parameter
ϕ ∈ {−0.50,−0.20, 0}. Rejection probabilities are based on 10,000 Monte Carlo simulations and sample size
T = 250.

5.3 Small-Sample Properties for Quantile Predictability Tests

We now examine the finite-sample performance of the proposed EL-based tests for quantile

predictability. As discussed in Section 3.2, the sample-splitting EL2 is not applicable to quantile

inference, so we focus on EL3 here. Table 4 depicts the results for test size and Figure 3

summarizes rejection probabilities across persistence regimes and endogeneity levels, comparing
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EL1 (the EL method, where the intercept ατ is treated as known), EL3 (the two-stage EL

procedure outlined in Section 3.2), and IVX (the test of Lee (2016)). To preserve clarity and

readability, for Figure 3, we report results for a selected set of quantiles τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

that capture both tails and the center of the distribution as well as ϕ = −0.5. The intercept is set

to be θ = 0.05 and the error is homoscedastic. Results for all other quantiles, for different levels

of endogeneity ϕ = 0,−0.2, with θ = 0, and under heteroscedasticity are qualitatively similar,

and our test continues to exhibit good finite sample performance. Those further simulation

results can be found in the Internet Appendix.

The results of Table 4 show that the EL-based quantile tests perform very well across all

persistence regimes considered, with rejection probabilities generally close to the nominal 5%

level across quantiles. First, in the stationary (c = −50) and local-to-unity (c = −20) cases, at

the 5% nominal level, size is well controlled for EL1 and EL3. This reflects the EL constraint

being well behaved when regressors are not highly persistent and the intercept estimation error

remaining negligible. In these regimes, seeing from Figure 3, the power of EL3 is virtually

indistinguishable from EL1 across all reported quantiles, indicating that the two-stage procedure

preserves near-oracle efficiency. IVX is competitive in these cases but generally exhibits slightly

lower power than EL3, particularly near the null where local alternatives matter most.

As persistence increases, differences become more pronounced. In the unit-root case (c = 0),

EL3 remains competitive relative to IVX for moderate signals and often converges to one faster

near the null. IVX tends to over-reject in this design, especially at extreme quantiles, although

its size improves somewhat as endogeneity increases while still remaining well above nominal.

EL3 exhibits good size properties that are consistent across endogeneity levels, though the gap

between EL3 and EL1 widens. This reflects the impact of estimating ατ . Under high persistence,

the intercept error interacts with serial dependence to tilt the EL constraint, reducing local

efficiency and, when endogeneity is present, inflating size slightly at the tails. For mildly

explosive predictors (c = 2), these patterns intensify. IVX tends to converge marginally faster

than EL3 for large signals, particularly at extreme quantiles, but its size distortions are more

pronounced whereas EL3 remains stable.

Overall, the two-stage EL procedure exhibits strong finite-sample properties for quantile

predictability. In stationary and moderately persistent settings, it tracks the oracle EL1 closely

and performs very well in terms of power. Under unit-root and mildly explosive regimes, EL3

remains competitive relative to IVX. The evidence suggests that the two-stage EL delivers good

power and size across quantiles and persistence levels.

Remark 10. We note that the mild over-rejection observed for mean predictability under

strong endogeneity (cf. Remark 9) is less pronounced in the quantile predictability results. This

is because the quantile EL moment is built on the bounded score ψτ (u) = τ − 1{u < 0} applied

to the quantile innovation Ut,τ . Therefore, the innovation-driven component linked to ϕVt affects
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Figure 3. Finite-sample size and power plots for quantile predictability tests with homoscedastic
errors and correlation ϕ = −0.5

Note: The figure summarizes rejection probabilities (y-axis) for tests of the null hypothesis of no predictive ability

in the quantile regression model (13), for a selected set of quantiles τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Results are shown

for EL1 (the EL method, where the intercept ατ is treated as known), EL3 (the two-stage EL procedure outlined

in Section 3.2), and IVX (benchmark test of Lee (2016)). EL tests are conducted using tanh-based weights with

Bartlett correction. The x-axis represents true values of the slope coefficient βτ , with βτ = 0 corresponding to

empirical size. The red dashed line marks the 5% nominal level. Rejection probabilities are based on 10,000

Monte Carlo simulations (see Section 5 for details of the simulation design). Results are reported for sample size

T = 250, localizing constant c ∈ {−50,−20, 0, 2}, θ = 0.05, and innovation correlation parameter ϕ = −0.5.

the moment primarily through the sign of the quantile residual via the indicator function rather

than its magnitude. Consequently, increases in |ϕ| are less likely to generate the heavy-tail and

higher-moment inflation of the EL score that can arise in the mean case, where the moment

depends linearly on Ut = ϕVt+zt. This helps stabilize the EL constraint under high persistence

and yields more reliable finite-sample calibration across quantiles.

To summarize the findings of this section, the simulation evidence for both mean and quantile

predictability indicates that the proposed EL procedures offer strong finite-sample performance,

with well-controlled size overall, while remaining competitive with IVX under high persistence.

We now turn to an empirical application to assess how these properties translate into real-world

predictability patterns.
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Table 5. Empirical results for predictive mean regressions

Variable EL2 EL3 IVX

Dividend price ratio 0.93 0.21 0.29
Dividend yield 0.88 0.16 0.24
Earnings price ratio 0.79 0.46 0.32
Dividend payout ratio 0.19 0.29 0.07
Book-to-market ratio 0.85 0.66 0.53
Net equity expansion 0.53 0.32 0.34
Treasury bill rate 0.04 0.03 0.02
Long term yield 0.11 0.11 0.08
The term spread 0.24 0.12 0.15
Default yield spread 0.66 0.29 0.30
Inflation 0.01 0.03 0.01

Note: This table reports p-values for the null hypothesis of no mean return predictability. The dependent
variable is the monthly continuously compounded return on the CRSP value-weighted index in excess of the
one-month Treasury bill rate. Predictive variables are listed in the first column. Results are based on EL2 (the
sample-splitting); EL3 (the two-stage EL procedure); and IVX (the test of Kostakis et al. (2015) and Phillips
and Lee (2016)). The sample period is from January 1952 to December 2024.

6 Empirical Application

This section is devoted to revisiting the evidence on the ability of financial and macroe-

conomic variables to predict stock market returns. Despite the voluminous literature on this

subject, there is still a debate as to whether future stock returns are predictable or not. On one

hand, studies like Lettau and Ludvigson (2001) argue that “. . . excess returns are predictable by

variables such as dividend-price ratios, earnings-price ratios, dividend-earnings ratios, and an

assortment of other financial indicators”. On the other hand, however, studies like Welch and

Goyal (2008) suggest that “. . . a healthy skepticism is appropriate when it comes to predicting

the equity premium”. We aim to shed some light on this debate by conducting a battery of

mean and quantile predictability tests that we developed in this paper.

We collect monthly data on the following eleven variables that are commonly used in the

literature as predictors of the aggregate market: the dividend payout ratio, the long-term yield,

the dividend yield, the dividend-price ratio, the Treasury bill rate, the earnings-price ratio,

the book-to-market value, the default yield spread, the net equity expansion, the term spread,

and the inflation rate. The data is obtained from Amit Goyal’s website2 and covers the period

from January 1952 to December 2024. The dependent variable in all predictive regressions is the

continuously compounded return of the CRSP value weighted index3 in excess of the one-month

Treasury bill rate.

We first analyze empirical evidence of mean predictability. Table 5 reports the p-values for

three testing procedures: the sample-splitting EL method in Section 2.2 (EL2), the two-stage

2See https://sites.google.com/view/agoyal145.
3The data for the CRSP index is obtained from Kenneth French’s website: https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/index.html
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Table 6. Empirical results for predictive quantile regressions

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: EL3

Dividend price ratio 0.32 0.65 0.99 0.60 0.70 0.44 0.16 0.10 0.76
Dividend yield 0.12 0.44 0.82 0.74 0.77 0.48 0.21 0.14 0.62
Earnings price ratio 0.39 0.77 0.64 0.31 0.41 0.75 0.25 0.37 0.79
Dividend payout ratio 0.68 0.81 0.38 0.20 0.29 0.18 0.09 0.03 0.15
Book-to-market ratio 0.72 0.42 0.33 0.10 0.17 0.80 0.33 0.14 0.66
Net equity expansion 0.51 0.32 0.05 0.05 0.06 0.64 0.21 0.29 0.01
Treasury bill rate 0.20 0.00 0.00 0.00 0.01 0.04 0.70 0.84 0.54
Long term yield 0.44 0.02 0.00 0.00 0.06 0.05 0.74 0.54 0.76
The term spread 0.14 0.02 0.15 0.15 0.13 0.37 0.90 0.42 0.21
Default yield spread 0.11 0.11 0.41 0.93 0.40 0.09 0.00 0.00 0.00
Inflation 0.22 0.04 0.00 0.00 0.01 0.12 0.30 0.63 0.17

Panel B: IVX

Dividend price ratio 0.00 0.00 0.01 0.89 0.97 0.28 0.04 0.00 0.00
Dividend yield 0.92 0.80 0.99 0.91 0.80 0.17 0.24 0.07 0.03
Earnings price ratio 0.85 0.16 0.04 0.29 0.71 0.65 0.39 0.37 0.10
Dividend payout ratio 0.04 0.23 0.44 0.02 0.07 0.08 0.19 0.01 0.04
Book-to-market ratio 0.00 0.00 0.01 0.15 0.73 0.04 0.00 0.08 0.00
Net equity expansion 0.87 0.28 0.29 0.33 0.39 0.97 0.41 0.35 0.07
Treasury bill rate 0.10 0.01 0.00 0.00 0.02 0.03 0.32 0.83 0.41
Long term yield 0.26 0.04 0.02 0.00 0.01 0.04 0.34 0.98 0.41
The term spread 0.06 0.11 0.46 0.78 0.61 0.66 0.77 0.70 0.86
Default yield spread 0.02 0.09 0.22 0.13 0.92 0.04 0.01 0.00 0.00
Inflation 0.18 0.15 0.01 0.00 0.00 0.04 0.25 0.30 0.12

Note: This table reports p-values for the null hypothesis of no predictability in conditional quantiles of excess
stock returns. The dependent variable is the monthly continuously compounded return on the CRSP value-
weighted index in excess of the one-month Treasury bill rate. Predictive variables are listed in the first column
and results are shown across quantiles τ ∈ {0.1, 0.2, . . . , 0.9}. Tests are based on two procedures: EL3 (the
two-stage EL procedure in Section 3.2) and IVX (the test of Lee (2016)). The sample period is January 1952 to
December 2024.

EL approach proposed in Section 2.3 (EL3), and the IVX procedure of Kostakis et al. (2015)

and Phillips and Lee (2016). The results indicate that the inflation rate and Treasury bill rate

are significant predictors under all three tests at the 5% level. There is also some evidence of

predictability for the dividend payout ratio and the long-term yield under IVX at the 10% level,

although these variables are not significant under the EL-based tests. All other predictors are

insignificant across methods, providing no statistical evidence to reject the null hypothesis of no

predictability for those variables. Overall, these findings provide some evidence that inflation

and short-term interest rates may have predictive content for market excess returns, while the

evidence for other variables is weak and depends on the testing method. This pattern suggests

that mean predictability, where present, is limited and concentrated in a few economically

relevant predictors and highlights the consistency of EL-based tests with conventional methods.

We next examine empirical evidence of quantile predictability. Table 6 reports p-values

for the two-stage EL-based test (EL3) and the IVX procedure across eleven predictors and

quantiles τ ∈ {0.1, 0.2, . . . , 0.9}. Several interesting findings emerge. First, the Treasury bill

rate and the long-term yield stand out as the most consistent predictors in the lower quantiles.
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Both variables are highly significant at 0.2 ≤ τ ≤ 0.6 under EL3 and IVX, with p-values often

below 1%. This suggests that short-term interest rates and bond yields contain predictive

information for downside risk in equity returns. Inflation also shows strong significance in the

lower tail (0.2 ≤ τ ≤ 0.5), particularly under EL3, while its predictive content diminishes in the

upper quantiles.

At central quantiles (say, τ = 0.50), evidence of predictability weakens considerably across

all variables. In the upper tail (τ ≥ 0.70), most predictors are insignificant, with the exception

of the default yield spread, which becomes significant under both EL3 and IVX, indicating its

relevance for extreme return outcomes. IVX occasionally flags dividend-related ratios and term

spreads at the 10% level, but these signals are rather sporadic.

Overall, predictability appears concentrated in the lower tail of the return distribution, with

interest rate variables and inflation emerging as the most relevant predictors, while the default

yield spread dominates in the upper tail. Other predictors exhibit weak or inconsistent signifi-

cance, reinforcing that predictability is limited to a small set of variables and primarily in the

tails. This pattern shows the importance of modeling tail behavior and suggests that quantile-

based tests can reveal forms of predictability that remain not captured in mean regressions.

7 Conclusion

This paper develops an empirical likelihood framework for unified inference in predictive

mean and quantile regressions across a broad spectrum of persistence, including stationary,

near-integrated, unit-root, and mildly explosive predictors. We establish Wilks-type chi-squared

limits of the proposed test statistics uniformly across the persistence of the predictor. We handle

the unknown intercepts through two complementary procedures: a sample-splitting approach

that operates under relaxed regularity conditions, and a new two-stage method that uses the full

sample to improve efficiency and extends naturally to quantile inference, where sample splitting

is infeasible. We investigate higher-order finite-sample distortions under strong persistence, and

propose gradually saturating weights and a Bartlett-type bias correction to mitigate the effects.

Simulation evidence demonstrates that the proposed EL procedures deliver well-calibrated

size and competitive power across persistence regimes. In mean regressions, the two-stage

method improves efficiency and sample splitting exhibits robust size properties even in highly

persistent settings. In predictive quantile regressions, the EL approach performs particularly

well, delivering close-to-nominal size across a wide range of quantiles including the tails, while

retaining strong power relative to existing alternatives in many scenarios.

An empirical application to U.S. equity returns illustrates the practical value of the frame-

work. Mean predictability is modest and concentrated in a small set of predictors such as

inflation and short-term interest rates. Quantile-based inference uncovers richer heterogeneity
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across the return distribution, with interest-rate variables and inflation showing stronger pre-

dictive content in the lower tail and the default yield spread becoming more informative in the

upper tail. The results reveal that predictability is not uniform across the distribution, point-

ing to the importance of distributional analysis in asset returns predictability. The findings

highlight the practical relevance of the proposed framework for risk management, portfolio al-

location, and policy evaluation, offering a flexible and theoretically grounded tool for assessing

predictability across the entire conditional distribution of returns.
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Appendix: Proofs of the Main Results

We use C and C ′ to denote some generic constants whose value may vary between oc-

currences, unless defined otherwise. Without loss of generality, we assume X0 = 0 following

standard practice. The norm ∥.∥1 is taken to mean the L1-norm.

Proof of Theorem 1. The proof is a special case of the proof of Theorem 3 below, with α

being a fixed, known constant, and hence is omitted for brevity. □

Proof of Theorem 2. We establish the asymptotic normality via the martingale central

limit theorem, Corollary 3.1 of Hall and Heyde (1980). First, the effect of θ in equation (2)

can be eliminated by employing similar argument in the proof of Theorem 2 in Zhu et al.

(2014), although their error terms are assumed to be strictly i.i.d. The next step concerns the

derivation of the probability limit of the martingale conditional variance. We write Hm,s =

σ(U∗
s , U

∗
s−1, . . . , U

∗
0 , ε

∗
s, ε

∗
s−1 . . . , ε

∗
0) with U

∗
s = Us+m −Us, ε

∗
s = εs+m − εs, and recall that Us is

a martingale difference with respect to Gs−1 = σ({Vr, zr} : r ≤ s− 1).

Define Z∗
Tt := (Y ∗

t − βX∗
t−1)w(X

∗
t−1) = U∗

t w(X
∗
t−1). If we write µt := E(Z∗

Tt|Hm,t−1) and

Ž∗
Tt := Z∗

Tt − µt, then {Ž∗
Tt} is a martingale difference array with respect to Hm,t−1. We later

show in (25) that m−1/2
∑m

t=1 µt = op(1) and 1
m

∑
t E(µ2t ) ≤ Cm−1

∑
k α(k)

c → 0. Under

conditional homoscedasticity of Us (i.e. Assumption 2(i)), we have from (8) that

1

m

m∑
t=1

E
(
Ž∗,2
Tt |Hm,t−1

)
=

1

m

m∑
t=1

E
(
Z∗,2
Tt |Hm,t−1

)
+ op(1)

=
1

m

m∑
t=1

E

([
(Y ∗

t − βX∗
t−1)w(X

∗
t−1)

]2∣∣∣∣∣Hm,t−1

)
+ op(1)

=
1

m

m∑
t=1

E

(
U∗,2
t w(X∗

t−1)
2

∣∣∣∣∣Hm,t−1

)
+ op(1)

=
1

m

m∑
t=1

[
E(U2

t+m|Hm,t−1) + E(U2
t |Hm,t−1) + 0

]
· w(X∗

t−1)
2 + op(1)

=
1

m

m∑
t=1

[
σ2U + E

(
E(U2

t |Gt−1+m)
∣∣Hm,t−1

)]
· w(X∗

t−1)
2 + op(1)

= σ2U
1

m

m∑
t=1

w(X∗
t−1)

2 +
1

m

m∑
t=1

gtw(X
∗
t−1)

2 + op(1)

=
2σ2U
m

m∑
t=1

w(X∗
t−1)

2 +
1

m

m∑
t=1

(gt − σ2U )w(X
∗
t−1)

2 + op(1) = Qm,1 +Qm,2 + op(1) (19)

by the tower property of conditional expectations.

Now, write B := σ({Vj+m, zj+m} : 0 ≤ j ≤ t − 1, j + m ≥ t) so that upon noting

j ∈ {0, 1, . . . , t − 1} we see that B = σ(Vm, zm, Vm+1, zm+1, . . . , Vt−1+m, zt−1+m). It is then

straightforward to show that (Gt−1 ∨ Hm,t−1) ⊂ (Gt−1 ∨ B), where C ∨ D = σ(C ∪ D), the join

of σ-fields.
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Therefore, we have

∥gt − σ2U∥1 = ∥E(U2
t |Hm,t−1)− E(U2

t |Gt−1)∥1
≤ ∥E(U2

t |Gt−1 ∨Hm,t−1)− E(U2
t |Gt−1)∥1

≤ ∥E(U2
t |Gt−1 ∨ B)− E(U2

t |Gt−1)∥1
= ∥E[U2

t − E(U2
t |Gt−1)|Gt−1 ∨ B]∥

≤ sup
Y ∈L∞(Gt−1∨B)

∥Y ∥∞≤1

∣∣E[(U2
t − E(U2

t |Gt−1))Y ]
∣∣

≤ C sup
Y ∈L∞(B)
∥Y ∥∞≤1

∣∣Cov(ζt, Y )
∣∣, (20)

because E(U2|F) − E(U2|A) = E[U2 − E(U2|A)|F ] for A ⊂ F , and for integrable W := U2
t −

E(U2
t |Gt−1) and ∥Y ∥∞ ≤ 1, we have (i) E[WY ] = E[E(W |F)Y ] ≤ E[E(W |F)|Y |] ≤ ∥E(W |F)∥1,

and (ii) choosing Y ∗ := sgn(E(W |F)) we have Y ∗ ∈ L∞(F), ∥Y ∗∥∞ ≤ 1, and supY |E[WY ]| ≥
E[WY ∗] = E[E(W |F)sgn(E(W |F))] = E|E(W |F)| ≡ ∥E(W |F)∥1. Here ζt = U2

t − E(U2
t |Gt−1).

Since σ(ζ) ⊂ σ((Vs, zs) : s ≤ t), σ(Y ) ⊂ B+ = σ((Vs, zs) : s ≥ m), and supt E|Ut|2+q < ∞,

for p = (2 + q)/q we have

|Cov(ζt, Y )| ≤ Cα(m− t)1/p∥ζt∥(2+q)/2∥Y ∥∞
≤ C ′α(m− t)1/p∥U2

t ∥(2+q)/2 (21)

for each t = 1, . . . ,m by Davydov’s inequality (see, for example, Corollary 1.1 in Bosq (1998)).

Note that for all weight function choices we consider: w(x) = x/
√
1 + x2, w(x) = x/(1+|x|),

and w(x) = tanh(x/b), we have w(Xt−1)
2 = Op(1). Hence, in view of (20) and (21), the Cesàro

mean theorem yields

∥Qm,2∥1 =

∥∥∥∥∥ 1

m

m∑
t=1

(gt − σ2U )w(X
∗
t−1)

2

∥∥∥∥∥
1

≤ 1

m

m∑
t=1

∥∥gt − σ2U
∥∥
1

≤ C

m

m∑
t=1

α(m− t)1/p

≤ 1

m

m−1∑
k=0

α(k)1/p → 0, (22)

because α(k) → 0 as k → ∞, and 0 ≤ α(k) ≤ 1.

In the meantime, since µt = w(X∗
t−1)E(Ut+m − Ut|Hm,t−1) = −w(X∗

t−1)E(Ut|Hm,t−1) and

Hm,t−1 ⊂ (Gt−1 ∨ Bt), using similar idea as in (20), (21), and Davydov’s inequality, we have

∥E(Ut|Hm,t−1)∥1 ≤ ∥E(Ut|Gt−1 ∨ Bt)∥1
≤ C sup

Y ∈L∞(Bt)
∥Y ∥∞≤1

∣∣Cov(Ut, Y )
∣∣ (23)

≤ C ′α(m− t)δ∥Ut∥2+q∥Y ∥∞ (24)
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where δ = 1− 1/(2 + q) = (1 + q)/(2 + q).

Since by Assumption 1, the mixing rate is either geometric or polynomial with exponent

greater than 2 + 1/(2(1 + q)), we have∥∥∥∥∥ 1√
m

m∑
t=1

µt

∥∥∥∥∥
1

≤ 1√
m

m∑
t=1

∥µt∥1

≤ C√
m

m∑
t=1

α(m− t)
1+q
2+q =

C√
m

m−1∑
k=0

α(k)
1+q
2+q → 0. (25)

Furthermore, following the same argument and using the L2-norm instead, we can also imme-

diately see that 1
m

∑
t E(µ2t ) ≤ Cm−1

∑
k α(k)

c → 0.

Returning to (22), since Qm,2 = op(1), we finally have

1

m

m∑
t=1

E
(
Ž∗,2
Tt |Hm,t−1

)
= 2σ2U ·

{
1

m

m∑
t=1

w(X∗
t−1)

2

}
+ op(1). (26)

Now, we note that in the mildly integrated case, i.e., ρ = ρT = 1 + c/T a with 0 < a < 1 and

c < 0, Phillips and Magdalinos (2007) showed that

T−a/2X⌊Ta t⌋ =⇒
∫ t

0
ec(t−r)dW (r), (27)

where W is Brownian motion with variance σ2 = E(ε2t ) and =⇒ refers to weak convergence

in the Skorohod space D[0, ℓ] (i.e. the space of the collection of R-valued càdlàg functions on

[0, 1]), see e.g. Pollard (1984). The initial condition X0 = op(T
a/2) is imposed, and a finite

moment strictly higher than 2 is required for the i.i.d. error term, which is consistent with what

we assume.

Furthermore, in the mildly explosive case, i.e., ρ = ρT = 1+ c/T a with 0 < a < 1 and c > 0,

the proof of Aue and Horváth (2007) suggests that for any fixed constant ℓ > 0 we have

1

ξ
−1/2
T (E(ε21))1/2

ρ−⌊ℓ/ξT ⌋X⌊ℓ/ξT ⌋ =⇒ e−ℓWαh,βh
(ℓ) +

∫ ℓ

0
Wαh,βh

(x)dx, (28)

where ξT = log ρ = log ρT = log(1 + c/T a) → 0 as T → ∞, and Wαh,βh
is a strictly α-stable

random variable.

In the near integrated case where a = 1 and c ̸= 0, we know from Phillips (1987) that

1√
T
X⌊Tr⌋ =⇒

∫ r

0
e−c(r−s)dW (s). (29)

In all three cases, the denominators of the “multiplier” to X all tend to the infinity in the

LHS of (27), (28) and (29). Specifically, we have |X∗
t |

p→ +∞ (i.e. P(|X∗
t | > r) → 1 for every

r > 0.

35



By Skorokhod representation theorem and Lebesgue’s dominated convergence theorem, we

have

w(X∗
t−1)

2 L1−→ 1 (30)

as t→ ∞.

For example, we have

(X∗
t−1)

2

1 + (X∗
t−1)

2

L1−→ 1;
(X∗

t−1)
2

(1 + |X∗
t−1|)2

L1−→ 1; tanh2(X∗
t−1/b)

L1−→ 1 (31)

as t → ∞, for any fixed b > 0. Consequently, the stochastic convergence of Cesàro means of

random variables yields

1

m

m∑
t=1

w(X∗
t−1)

2 L1−→ 1 (32)

as T → ∞, which implies convergence in probability to 1. Therefore, in view of (19), (26), and

(32) we finally have

1

m

m∑
t=1

E
(
Ž∗,2
Tt |Hm,t−1

) p−→ 2σ2U (33)

in all nonstationary cases we consider.

Meanwhile, in the stationary case where |ρ| < 1, since w(·) is bounded and continuous (hence

measurable), we have

E
[
w
(
X∗

t−1

)2]
= E

w
(

t−1∑
i=1

ρt−i−1ε∗i

)2
 + o(1).

We write limt→∞ E{·} =: ν2 so that E{w(X∗
t−1)

2} = ν2+o(1) as t→ ∞. Here the linear process∑∞
k=0 ρ

kε∗t−1−k is well defined and converges absolutely a.s. since
∑

k≥0 |ρ|k <∞; moreover w2

is bounded, so dominated convergence yields the limit. For example, when w(x) = x/
√
1 + x2,

E
[

(X∗
t−1)

2

1 + (X∗
t−1)

2

]
= E

[ (∑t−1
i=1 ρ

t−i−1ε∗i
)2

1 +
(∑t−1

i=1 ρ
t−i−1ε∗i

)2
]
+ op(1)

→ lim
t→∞

E

{ (∑t−1
i=1 ρ

t−i−1ε∗i
)2

1 +
(∑t−1

i=1 ρ
t−i−1ε∗i

)2
}

+ op(1)

=: ν2 + op(1) (34)

because the series converges absolutely almost surely.

Therefore, by the law of large numbers for stationary processes, as m = ⌊T/2⌋ → ∞ it

follows that
1

m

m∑
t=1

E
(
Ž∗,2
Tt |Hm,t−1

) p−→ 2σ2U · ν2. (35)
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By Assumption 1, Markov’s inequality, and Jensen’s inequality, for any ϵ > 0 we have

m∑
t=1

E

(
Ž∗,2
Tt (β)

m
1

{
Ž∗,2
Tt (β)

m
> ϵ

}∣∣∣∣∣Hm,t−1

)

≤
m∑
t=1

1

ϵq/2
E

(∣∣∣∣ 1√
m
Ž∗
Tt(β)

∣∣∣∣2+q
∣∣∣∣∣Hm,t−1

)

≤ C

ϵq/2m1+q/2

m∑
t=1

E
(
|U∗

t |
2+q
∣∣w(X∗

t−1)
∣∣2+q

∣∣∣∣Hm,t−1

)

≤
supt E

∣∣U∗
t

∣∣2+q

ϵq/2mq/2
·

{
1

m

m∑
t=1

∣∣w(X∗
t−1)

∣∣2+q

}
= Op(1) ·

1

mq/2
= op(1). (36)

Now that the conditional Lindeberg condition (36) is met, it follows by the martingale central

limit theorem (e.g. Hall and Heyde (1980)) that

1√
m

m∑
t=1

Ž∗
Tt(β)

d−→ N
(
0, η2

)
, (37)

where η2 is the probability limit of (19), i.e. 2σ2U · ν2 in the stationary case and 2σ2U otherwise.

The same result holds under conditional heteroscedasticity of Ut, i.e. Assumption 2-(ii) as

we show now. Consider

1

m

m∑
t=1

[
E(U2

t+m|Hm,t−1) + E(U2
t |Hm,t−1)

]
w(X∗

t−1)
2 = W1,t +W2,t.

For the first term, using the same arguments used before and the Cesàro mean theorem we have

∥∥E(U2
t+m|Hm,t−1)− σ2t+m

∥∥
1

=
∥∥E(E[U2

t+m|Gt−1+m]|Hm,t−1

)
− σ2t+m

∥∥
1

=
∥∥E(σ2t+m|Hm,t−1

)
− σ2t+m

∥∥
1

≤ Cα(m− t)q/(2+q) → 0. (38)

Similarly, as for the second term, we have

∥∥E(U2
t |Hm,t−1)− E(U2

t |Gt−1)
∥∥
1
≤ Cα(m− t)q/(2+q) → 0. (39)

Hence, it follows by the triangle inequality that

W1,t +W2,t =
1

m

m∑
t=1

(σ2t+m + σ2t )w(X
∗
t−1)

2 + op(1), (40)

because 0 ≤ w(X∗
t−1)

2 ≤ 1, a.s., w(X∗
t−1)

2 converges in probability to a constant as t → ∞ for

all persistence classes C1−C5, and supt E(σ
2+q/2
t ) <∞.
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Furthermore, with the uniform boundedness of Eσ2t we see that

1

m

m∑
t=1

(σ2t + σ2t+m) =
1

m

(
m∑
s=1

σ2s +
2m∑

s=m+1

σ2s

)
= 2

1

2m

2m∑
s=1

σ2s (41)

and therefore, in view of (40), (41) and Assumption 2, it follows that W1,t + W2,t converges

in probability to 2σ2 · ν2 in the stationary case and 2σ2 otherwise. The conditional Lindeberg

condition can be verified by following the same argument as above, using the boundedness of

the weight and E|Ut|2+q, and is not repeated for brevity.

We now check if X converges in distribution to a random variable (that is finite a.s.) in the

conditionally heteroscedastic case. In the mildly explosive case, by Lemma 4.1 of Lee (2018) we

have
1

T a/2ρTT
XT =⇒ Xc (42)

where Xc is centred Gaussian random variable with variance E(σ2t )/(2c). The cases of unit

root and mildly integrated regressors can be handled based on the results by Andrews and

Guggenberger (2014).

As for the near integrated case, Lemma 3.1 of Lee (2018) showed that the same limit theory

of Phillips (1987) in the conditional homoscedastic case is valid: i.e.,

1√
T
X⌊Tr⌋ =⇒

∫ r

0
ec(r−s)dW (s). (43)

Consequently, we see that the previous argument continues to apply, and

w(X∗
t−1)

2 L1−→ 1. (44)

For example, for w(x) = x/
√
1 + x2 we have (X∗

t−1)
2/(1 + (X∗

t−1)
2) →p 1.

Therefore, as before in (37) it follows that

1√
m

m∑
t=1

Ž∗
Tt(β)

d−→ N
(
0, η2

)
, (45)

where η2 is equal to 2σ2 · ν2 in the stationary case and 2σ2 otherwise.

Finally, following the same derivations in (16) we have

ℓ∗T (β) =

(
1√
m

∑m
t=1 Ž

∗
t (β)

)2
1
m

∑m
t=1(Ž

∗
t (β))

2
+ op(1)

d−→ χ2
1, (46)

which completes the proof. □
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Proof of Theorem 3. With Ỹt = Yt − α̃ and Z̃t(β) =
[
Ỹt − βXt−1

]
· wc(Xt−1), recall that

the centered weight is

wc(Xt−1) := w(Xt−1) − 1

T

T∑
s=1

w(Xs−1). (47)

We have

1√
T

T∑
t=1

Z̃t(β) =
1√
T

T∑
t=1

[
Ỹt − βXt−1

]
· wc(Xt−1)

=
1√
T

T∑
t=1

[
(Yt − α− βXt−1)− (α̃− α)

]
· wc(Xt−1)

=
1√
T

T∑
t=1

Utw
c(Xt−1)−

√
T (α̃− α)

1

T

T∑
t=1

wc(Xt−1) = AT −BT ,

and BT is zero by the construction of the centered weight.

In order to employ the martingale central limit theorem, it remains to establish (i) an

asymptotic limit for AT , and (ii) consistency of the average T−1
∑T

t=1(Utw
c(Xt−1))

2, as well as

checking the conditional Lindeberg condition. For simplicity of presentation we write

wt := w(Xt−1), w̄T :=
1

T

T∑
s=1

ws, wc
t := wt − w̄T , (48)

so that AT = T−1/2
∑T

t=1 Utw
c
t . Define also

A1T :=
1√
T

T∑
t=1

Utwt, A0T :=
1√
T

T∑
t=1

Ut, (49)

so that AT = A1T − w̄TA0T . Given Gt := σ({Vs, zs} : s ≤ t), since Ut is a martingale difference

with respect to Gt−1 and wt = w(Xt−1) is Gt−1-measurable, the vector

∆Tt :=

Utwt

Ut

 (50)

is a martingale difference array with respect to Gt−1. Consider the normalized partial sums

MT :=
1√
T

T∑
t=1

∆Tt =

A1T

A0T

 . (51)

Write σ2t := E(U2
t | Gt−1), which equals σ2U under Assumption 2(i) and may be time-varying

under Assumption 2(ii). The predictable quadratic variation matrix of MT is

⟨M⟩T :=
1

T

T∑
t=1

E
(
∆Tt∆

′
Tt|Gt−1

)
=

1

T

T∑
t=1

σ2t

w2
t wt

wt 1

 . (52)
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The weight assumptions (i.e. boundedness and asymptotic stability of Cesàro averages of w2
t

across persistence classes C1 − C5) imply that ⟨M⟩T converges in probability to a finite, pos-

sibly random, limit matrix Σ. Consequently, the scalar quadratic variation associated with the

centered combination satisfies

η2T :=
(
1 −w̄T

)
⟨M⟩T

 1

−w̄T

 =
1

T

T∑
t=1

σ2t (w
c
t )

2 p−→ η2, (53)

where η2 vary across persistence classes. We emphasize that unlike in Theorem 2, η2 here

depends on the probability limit of w̄T (instead of w2
t ), and hence may be random.

Next, we check the conditional Lindeberg condition. Since the weight satisfies |w(·)| ≤ 1,

a.s., we have |wc
t | ≤ |wt| + |w̄T | ≤ 2, hence ∥∆Tt∥ ≤ C|Ut|. Using supt E|Ut|2+q < ∞ from

Assumption 1, for any ε > 0, it follows that

1

T

T∑
t=1

E
(
∥∆Tt∥21{∥∆Tt∥ > ε

√
T}
∣∣∣∣Gt−1

)
≤ C

T q/2
· 1
T

T∑
t=1

E
(
|Ut|2+q|Gt−1

)
= op(1).

Therefore, by the martingale central limit theorem we obtain the following stable convergence

to mixed-normal:

MT
st−→MN(0,Σ), (54)

which implies

AT =
(
1 −w̄T

)
MT

st−→MN(0, η2). (55)

In particular, when η2 is nonrandom, depending on the persistence class, this reduces to the

usual N(0, η2) limit. Consequently, we have

1√
T

T∑
t=1

Utw
c(Xt−1)

st−→MN(0, η2). (56)

Write VT := T−1
∑T

t=1

(
Utw

c
t

)2
. We have

VT =
1

T

T∑
t=1

U2
t (wt−w̄T )

2 =
1

T

T∑
t=1

U2
t w

2
t −2w̄T

1

T

T∑
t=1

U2
t wt+w̄

2
T

1

T

T∑
t=1

U2
t = A

(2)
T +B

(2)
T +C

(2)
T

Similarly, we define

A
(2,0)
T :=

1

T

T∑
t=1

σ2tw
2
t , B

(2,0)
T :=

1

T

T∑
t=1

σ2twt, C
(2,0)
T :=

1

T

T∑
t=1

σ2t . (57)

Since wt is Gt−1-measurable, for k = 0, 1, 2, each difference U2
t w

k
t − E(U2

t | Gt−1)w
k
t =

(
U2
t −

σ2t
)
wk
t is a martingale difference.

With supt E|Ut|2+q < ∞ and bounded wt, the standard martingale law of large numbers
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yields A
(2)
T −A

(2,0)
T = op(1), B

(2)
T −B

(2,0)
T = op(1), and C

(2)
T −C

(2,0)
T = op(1). Therefore, we have

VT = A
(2,0)
T − 2w̄TB

(2,0)
T + w̄2

TC
(2,0)
T + op(1)

=
1

T

T∑
t=1

σ2t (w
c
t )

2 + op(1) = η2T + op(1)
p−→ η2. (58)

Now, in view of (56) and (58), we have

AT√
VT

st−→ N(0, 1), and hence
A2

T

VT

st−→ χ2
1. (59)

Hence, standard Taylor expansion argument as in equations (15) as before yields ℓ̃T (β) →st χ2
1

as T → ∞, which implies the desired convergence in distribution. □

Proof of Theorem 4. The proof is a special case of the proof of Theorem 5 below, with ατ

being a fixed, known constant, and hence is omitted for brevity. □

Proof of Theorem 5. We write ψτ (u) = τ − 1(u < 0), wt := w(Xt−1), wT := T−1
∑T

s=1ws,

and wc
t := wt − w̄T . With the two-stage intercept-adjusted response Ỹt := Yt − α̃τ , we have

ξ̃t,τ (βτ ) := ψτ (Ỹt − βτXt−1)w
c
t = ψτ (Yt − α̃τ − βXt−1)w

c
t . (60)

Since there exists a constant fτ (0) ∈ (0,∞) and ε0 > 0 such that, uniformly in t, Ft,τ (u|Gt−1) :=

P(Ut,τ ≤ u|Gt−1) = τ + fτ (0)u+O(u2) a.s. for |u| ≤ ε0 by Assumption 3, we have

1√
T

T∑
t=1

ξ̃t,τ (βτ ) =
1√
T

T∑
t=1

ψτ (Ut,τ )w
c
t +

1√
T

T∑
t=1

{
ψτ (Ut,τ − (α̃τ − ατ ))− ψτ (Ut,τ )

}
wc
t

=:
1√
T

T∑
t=1

ψτ (Ut,τ )w
c
t +

1√
T

T∑
t=1

Dt(α̃τ − ατ ) · wc
t

=: AT +RT . (61)

Note that Lee (2016) implies that α̃τ is
√
T -consistent for ατ . Using the standard decomposition

Dt(α̃τ − ατ ) = E(Dt(α̃τ − ατ )|Gt−1) + D̃t(α̃τ − ατ ), with E(D̃t(α̃τ − ατ )|Gt−1) = 0, we have

RT =
1√
T

T∑
t=1

E(Dt(α̃τ − ατ )|Gt−1)w
c
t +

1√
T

T∑
t=1

D̃t(α̃τ − ατ )w
c
t =: RT,1 +RT,2. (62)

Since E(Dt(α̃τ −ατ )|Gt−1) = Ft,τ (0|Gt−1)−Ft,τ (α̃τ −ατ |Gt−1) = τ −Ft,τ (α̃τ −ατ |Gt−1), we have

RT,1 =
[
−
√
Tfτ (0)(α̃τ − ατ ) + C · (α̃τ − ατ )

2
] 1

T

T∑
t=1

wc
t = 0. (63)
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by construction. Next, for RT,2, noting that |D̃t(·)| ≤ 1, |wc
t | ≤ 2, it follows that

E(R2
T,2|Gt−1) ≤ C

T

T∑
t=1

E(Dt(α̃τ − ατ )
2|Gt−1) = op(1), (64)

and henceRT = op(1). Similarly, on noting boundedness of ψ2
τ , it follows that T

−1
∑T

t=1 ξ̃t,τ (βτ )
2−

T−1
∑T

t=1((ψτ (Ut,τ )w
c
t )

2 = op(1).

Since Xt−1 is Gt−1-measurable, we have E(ψτ (Ut,τ )|Gt−1) = 0 and E(ψτ (Ut,τ )
2 | Gt−1) =

τ(1− τ). Therefore, ψτ (Ut,τ ) is a martingale difference with respect to Gt−1, and the rest of the

proof is closely similar to the proof of Theorem 3. Write

∆Tt :=

ψτ (Ut,τ )wt

ψτ (Ut,τ )

 , MT :=
1√
T

T∑
t=1

∆Tt =

 1√
T

∑T
t=1 ψτ (Ut,τ )wt

1√
T

∑T
t=1 ψτ (Ut,τ )

 . (65)

Then, the quadratic variation of MT is given by

⟨M⟩T :=
1

T

T∑
t=1

E(∆Tt∆
′
Tt|Gt−1) = τ(1− τ) · 1

T

T∑
t=1

w2
t wt

wt 1

 , (66)

and following the same steps in the proof of Theorem 3, it follows that(
1 −w̄T

)
MT

st−→ MN(0, η2), (67)

where

η2T :=
(
1 −w̄T

)
⟨M⟩T

 1

−w̄T

 = τ(1− τ) · 1
T

T∑
t=1

(wc
t )

2 p→ η2. (68)

In the meantime, since wt is Gt−1-measurable and E(ψτ (Ut,τ )
2|Gt−1) = τ(1−τ), we can straight-

forwardly show consistency of the self-normalizer as before. That is,

VT =
1

T

T∑
t=1

ξ̃t,τ (βτ,0)
2

=
1

T

T∑
t=1

ψτ (Ut,τ )
2w2

t − 2w̄T
1

T

T∑
t=1

ψτ (Ut,τ )
2wt + w̄2

T

1

T

T∑
t=1

ψτ (Ut,τ )
2 + op(1)

= τ(1− τ) · 1
T

T∑
t=1

(wc
t )

2 + op(1)
p−→ η2. (69)

Consequently, as T → ∞,

1√
T

∑T
t=1 ξ̃t,τ (βτ,0)√
VT

st−→ N(0, 1), and hence

(
1√
T

∑T
t=1 ξ̃t,τ (βτ,0)

)2
VT

st−→ χ2
1. (70)

Therefore, ℓ̃T,τ (βτ ) converges in distribution to χ2
1 as desired. The proof is now complete. □
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