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Abstract

This paper examines the predictive role of high-frequency factor volatilities in modeling the

volatility of individual stocks. We develop a dynamic forecasting framework that selects the

most informative factor-specific realized volatility from a large cross-section of asset pricing

anomalies. Embedded in a log-linear specification, the model integrates both market-wide

and idiosyncratic components, allowing for a flexible representation of volatility dynamics.

We prove the strong consistency of our selection procedure, and show that our selection

rule asymptotically identifies the factor that truly drives volatility. We further show how

measurement errors affect the adaptive selection. Empirical results based on a broad universe

of U.S. equities demonstrate that the proposed method significantly outperforms standard

benchmarks, both statistically and economically. The findings underscore the importance

of incorporating high-frequency cross-sectional information in volatility modeling, offering a

scalable and interpretable approach to understanding time-varying risks in equity markets.
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1 Introduction

Volatility plays a fundamental role in finance as it underlies the risk-reward dynamics defining

modern financial theories, from investment decision-making to monetary policies. Despite its

centrality, the modeling of volatility remains largely uninformed about the multivariate

frameworks that dominate empirical asset pricing. From the first factor model of Sharpe (1964)

to the “zoo” of factors in Harvey et al. (2016), the literature on financial returns has long

embraced systematic, cross-sectional structures; in contrast, volatility has mainly been modeled

as an idiosyncratic, asset-specific process. As Bollerslev (2022) notes, volatility modeling has

been slow to internalize the inherently multivariate nature of market dynamics, often ignoring

the factor structures that drive both return co-movements and correlated risk exposures. The

result is a methodological gap: whereas expected returns are modeled via linear exposures to

observable or latent factors, volatility is typically forecasted without acknowledging systematic

drivers.

Any volatility modeling framework ultimately hinges on how precisely variance can be

measured. Early contributions such as the ARCH model of Engle (1982) and its generalized

version by Bollerslev (1986) introduced conditional heteroskedasticity as a time-varying

property of return series. Parallel to these, the stochastic volatility models by Taylor (1982)

offered a latent process formulation. The introduction of high-frequency financial data marked

a fundamental shift, enabling, under ideal sampling conditions, nonparametric estimation of

risk with realized volatility (RV) measures. However, the discrete and discontinuous nature of

financial markets poses challenges for the unbiased and consistent estimation of realized

volatility: multi-scale estimators (Zhang et al., 2005, Nolte and Voev, 2012) and pre-averaging

methods (Christensen et al., 2014) address market microstructure noise; bipower and

multipower estimators (Barndorff-Nielsen and Shephard, 2004), truncated estimators (Mancini,

2009) and some combinations thereof (Corsi et al., 2010) focus on jumps; recent contributions

(Andersen et al., 2023, Li et al., 2025) provide robust estimation in presence of short-lived

extreme price movements. These advancements have made it possible to recover the latent

volatility process efficiently, providing a reliable instrument for volatility forecasting models.

One of the most influential frameworks to leverage realized volatility is the Heterogeneous

Autoregressive model of Corsi (2009). The HAR model parsimoniously captures the

long-memory behavior of volatility by including lagged daily, weekly, and monthly realized

volatilities as regressors, approximating the effect of a broader lag distribution in a simple

linear specification. Volatility forecasting has further improved with extensions such as the

semivariance HAR (SHAR) model of Patton and Sheppard (2015), allowing for conditional

asymmetries through signed returns, or the HARQ of Bollerslev et al. (2016), introducing

realized quarticity to account for temporal variations in RV measurement errors. Despite these
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refinements, a foundational limitation remains: HAR models are inherently univariate, thus

agnostic to any systematic risk factors.

The limitations of univariate volatility models have motivated a shift towards specifications

incorporating cross-sectional information. A prominent example is the market-HAR model

introduced by Hizmeri et al. (2022), which augments the standard framework with market-level

realized (co)variances and semi(co)variances. Building on similar reasoning, the multiplicative

volatility factor (MVF) model proposed by Ding et al. (2025) presents a parsimonious structure

in which the realized variance of each stock is expressed as the product of a latent common

volatility factor and an idiosyncratic residual. Empirically, both models demonstrate significant

gains in forecast accuracy, confirming a stylized fact: stock volatilities co-move over time, often

driven by aggregated shocks rather than isolated firm-level events. This insight is

well-grounded in the empirical literature. Early studies by Engle et al. (1988) and Calvet et al.

(2006) document volatility spillovers across markets and asset classes. Complementing this,

Herskovic et al. (2016) identify a latent common idiosyncratic volatility factor that explains a

significant fraction of cross-sectional volatility dispersion. More recent works emphasize the role

of firm-level linkages: Herskovic et al. (2020) show that firms embedded in central positions

within economic networks exhibit stronger volatility co-movement. At the macro level,

Bollerslev et al. (2018) and Engle and Campos-Martins (2023) provide evidence of global

volatility factors driving fluctuations in equity markets, reinforcing the importance of modeling

volatility beyond the firm-specific scale.

The observed heterogeneity in volatility patterns extends beyond a single driver. Figure 1

displays the annualized realized volatility of the high-frequency market (MKT) factor against

the other four Fama and French (2015) factors, namely size (SMB), value (HML), profitability

(RMW), and investment (CMA). Every time series exhibits distinct and persistent dynamics

over time, suggesting that volatility may originate from multiple, structurally distinct sources.

Recent works by Barigozzi and Hallin (2017) and Kapadia et al. (2024) provide robust evidence

that multiple volatility shocks arise from diverse economic sources such as styles, industries, and

risk premia structures. In this context, the identification of the most informative factor variance

must be flexible and dynamic, thereby motivating adaptive multi-factor frameworks that update

their forecasting structure in response to shifting volatility regimes.

The present paper introduces a novel volatility model that extends the HAR structure by

dynamically selecting the most informative components among a large cross-section of

high-frequency asset pricing factors. Specifically, we construct daily realized variances based on

second-level intraday returns for 287 observable anomalies, covering the full set proposed in

Fama and French (2018), Chen and Zimmermann (2022) and Jensen et al. (2023).

Methodologically, this approach contributes to the literature on high-dimensional forecasting by

imposing structural sparsity through selection rather than shrinkage. Unlike LASSO-type
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Figure 1: Annualized 5-minute realized volatility of Fama-French five factors (MKT, SMB, HML, RMW, CMA) from 2014
to 2023. The figure illustrates the heterogeneous dynamics of factor volatilities.

estimators (Chinco et al., 2019, Gu et al., 2020) or composite forecast models (Freyberger

et al., 2020), which often yield opaque functional relationships or unstable inclusion patterns,

our model remains interpretable, tractable, and grounded in economic theory. Moreover, it

complements recent advances in volatility decomposition (Barigozzi and Hallin, 2020, Luciani

and Veredas, 2015), network-based risk propagation (Zheng and Li, 2011), and regime-sensitive

factor modeling (Asai et al., 2015, Atak and Kapetanios, 2013).

We evaluate forecasting performance across more than one thousand U.S. equities,

markedly exceeding the cross-sectional coverage of typical studies in the volatility forecasting

literature. The proposed model is benchmarked against several prominent volatility forecasting

frameworks, delivering statistically significant improvements in forecast accuracy. Assets

inherit volatility from common drivers: shocks to factor-level uncertainty propagate to

individual variance through time-varying exposures, so realized factor volatility at multiple

horizons add information beyond an asset’s own history. The robustness of these gains is

confirmed across multiple realized volatility estimators, forecasting horizons, and loss functions.

These results establish the necessity of incorporating factor-specific volatility components in

forecasting models, and show that informational efficiency depends not only on the precision of

realized-variance measurement but also on the structural selection of its predictors.

The remainder of the paper is structured as follows. Section 2 outlines the econometric

framework, model specification, and theoretical foundations of the log-HAR framework with

adaptive factor volatilities. We prove the strong consistency of our selection procedure, where

we show the quasi-likelihood (QLIKE)-based selection rule asymptotically identifies the factor
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that truly drives volatility. We also characterize how the mis-selection probability responds to

measurement error. Section 3 describes the dataset construction and implementation details.

Section 4 presents the forecasting results and factor analysis. Section 5 concludes.

2 Theoretical framework

2.1 Setup and background theory

Throughout the paper, we work on a filtered probability space (Ω,F , (Ft)t≥0,P) with a complete

and right-continuous filtration. For each asset i = 1, . . . , N , the log-price process (Pi,t)t≥0 is

defined on this space, adapted to (Ft), and is an Itô semimartingale of the form

dPi,t = µi,t dt+ σi,t dWi,t; t ≥ 0, (1)

where the drift µi,t and instantaneous volatility σi,t are (Ft)-progressively measurable processes

such that, for every T < ∞,
∫ T
0 |µi,t|dt < ∞ a.s. and

∫ T
0 σ2

i,tdt < ∞ a.s., and Wi,t is a standard

(Ft)-Brownian motion.

Writing the trading day t ≥ 1 as the unit-length interval (t − 1, t], we define the latent

integrated variance for asset i on day t as

IVi,t :=

∫ t

t−1
σ2
i,s ds. (2)

The integrated variance aggregates the entire intraday volatility path, and is the quantity we

ultimately seek to forecast at daily and longer horizons. To maintain conciseness in the

exposition, we abstract from discontinuous price moves here; jumps and other extreme price

movements are incorporated through robust estimators in the empirical analysis presented in

Section 4.

Although the integrated variance IVi,t is not observable, it is well known that high-frequency

returns yield a consistent nonparametric estimator. Specifically, let ∆ = 1/M be the intraday

sampling interval and index observations by j = 1, . . . ,M . On the equally spaced intraday grid,

the j-th intraday return is ri,t,j = Pi,t−1+j∆−Pi,t−1+(j−1)∆. Under the continuous semimartingale

assumption and in the absence of market microstructure noise, the realized variance

RVi,t :=

M∑
j=1

r2i,t,j =

M∑
j=1

(
Pi,t−1+j∆ − Pi,t−1+(j−1)∆

)2 (3)

converges in probability to IVi,t as the mesh ∆ → 0 (i.e. M → ∞); the analogous joint

convergence holds in multivariate sense for the realized covariance matrix, and hence for any

fixed linear portfolio. If there was a jump component in (1), then (3) would converge in
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probability to the quadratic variation, which incorporates the jump variations in addition to

the integrated variance. See Theorems 4.47 and 4.52 of Jacod and Shiryaev (2003) for details.

The limiting distribution of the realized variance has been widely investigated in the literature

under diverse conditions, see Aït-Sahalia and Jacod (2014) for a comprehensive exposition.

We construct asset pricing factors from the same universe of stocks as the individual assets.

Let rk,t denote the daily log return on an asset pricing factor k ∈ K, with K denoting the finite

index set corresponding to the set of candidate factors (e.g., MKT, SMB, HML).1 Writing rk,t,j

for the j-th intraday log return of factor k computed on the equally spaced grid {t− 1 + ∆, t−

1 + 2∆, . . . , t} with mesh ∆ = 1/M , we estimate the factor volatility nonparametrically by the

realized variance

FRVk,t :=
M∑
j=1

r2k,t,j , (4)

the realized factor variance. By continuous mapping, the consistency and limiting distribution

results extend to the realized variance of the factor return, provided the sampling is free of

microstructure noise and the factor is implemented as a self-financing, tradable linear portfolio

with weights that are Ft−1-measurable and of bounded variation on (t− 1, t].

The asset- and factor-level realized variances defined above constitute the observable building

blocks for the theoretical framework developed in the next subsections.

2.2 Adaptive Factor-Driven Volatility Models

We propose a volatility forecasting framework that augments the heterogeneous autoregressive

(HAR) structure with multiplicative factor components. To ensure the non-negativity of the

variance, to alleviate right-skewness and heavy tails, and to render the multiplicative

decomposition additive, we adopt a log-linear specification and work with logRVi,t, i.e., the log

realized variance of stock i on day t.

We model logRVi,t as the linear combination of three log predictor blocks. First, the market

proxy, which is defined as the cross-sectional average of realized variances across all stocks

CRVt :=
1

N

N∑
i=1

RVi,t, (5)

hereafter referred to as common realized variance (CRV). Second, the stock-specific component

ξi,t :=
RVi,t

CRVt
, (6)

defined as the multiplicative residual of stock i’s variance relative to the cross-section. Third,
1All factors examined are diversified in the sense of Ross (2013), so the associated portfolios bear negligible

firm-specific risk. This feature distinguishes our analysis from Herskovic et al. (2016) and related studies that
focus on commonality in the volatility of firm-specific returns.
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the factor specific component FRVk⋆i,t
, which is the realized factor variance (4) corresponding to

the high-frequency factor k⋆i,t ∈ K, where k⋆i,t is chosen adaptively as the factor whose realized

variance lags yield the best in-sample explanatory power for stock i.2 See (8) below and the

discussion that follows.

Each component adds to the model daily, weekly, and monthly lags. Specifically, for each

stock i, day t and forecasting horizon h, the log-realized variance logRVi,t+h follows the linear

model

logRVi,t+h = β0 + β
(d)
CRV logCRV

(d)
t + β

(w)
CRV logCRV

(w)
t + β

(m)
CRV logCRV

(m)
t

+ β
(d)
ξ log ξ

(d)
i,t + β

(w)
ξ log ξ

(w)
i,t + β

(m)
ξ log ξ

(m)
i,t

+ β
(d)
k⋆ logFRV

(d)
k⋆i,t

+ β
(w)
k⋆ logFRV

(w)
k⋆i,t

+ β
(m)
k⋆ logFRV

(m)
k⋆i,t

+ εi,t+h

= β0 + β⊤
CRV


logCRV

(d)
t

logCRV
(w)
t

logCRV
(m)
t


︸ ︷︷ ︸

Market/Common block

+β⊤
ξ


log ξ

(d)
i,t

log ξ
(w)
i,t

log ξ
(m)
i,t


︸ ︷︷ ︸
Stock block

+β⊤
k⋆


logFRV

(d)
k⋆i,t

logFRV
(w)
k⋆i,t

logFRV
(m)
k⋆i,t


︸ ︷︷ ︸

Factor block

+εi,t+h,

(7)

where the coefficients βCRV = (β
(d)
CRV , β

(w)
CRV , β

(m)
CRV ), βξ = (β

(d)
ξ , β

(w)
ξ , β

(m)
ξ ) and

βk⋆ = (β
(d)
k⋆ , β

(w)
k⋆ , β

(m)
k⋆ ) are estimated by the OLS over a rolling estimation window of fixed

length L. The superscripts (d), (w), (m) refer to the daily (x(d)t = xt), weekly

(x(w)
t = 1

5

∑4
τ=0 xt−τ ), and monthly (x(m)

t = 1
22

∑21
τ=0 xt−τ ) averages, respectively, for

xt = CRVt, ξi,t, or FRVk⋆i,t
.

For a selection window of length S, the high-frequency factor to be chosen by k⋆i,t is the

one delivering the best in-sample quasi-likelihood (QLIKE) performance. That is, we choose the

factor that minimizes the QLIKE loss

k⋆i,t := argmin
k∈K

 1

S

t∑
s=t−S+1

log
R̂V

k

i,s

RVi,s

+
RVi,s

R̂V
k

i,s

− 1

 , (8)

where RVi,s is the measured realized variance and R̂V
k

i,s is the forecasted (with candidate

factor k) realized variance of stock i on day s of the selection period.3 The forecasts R̂V
k

i,s are

calculated using the estimated coefficients of the proposed model, which includes the factor

block, daily, weekly, and monthly lags of logFRVk⋆i,t
, alongside the CRV and ξ blocks.

2Equation (4) defines FRVk,t as the realized variance of factor k at date t. When the selected factor index is
k⋆
i,t (chosen for stock i at date t), the corresponding series is FRVk⋆

i,t, t
. To avoid reporting the same time index,

we henceforth write FRVk⋆
i,t

3As a robustness check, we also implement the selection rule using the RMSE loss metric. The resulting
forecasts (reported in Appendix C) are qualitatively similar, indicating that our adaptive factor choice is not
sensitive to the specific loss function employed.
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Remark. The estimation window L and the selection window S serve different purposes. The

former is used to estimate the coefficients in (7) while the latter is used to score candidate

factors in (8). In our specification, we impose S ≤ L so that the S evaluation observations lie

within the L-day estimation sample, ensuring that the QLIKE criterion is computed in-sample

at t under common (fixed) parameter estimates.

The final specification (7) preserves the interpretability of the standard HAR structure while

expanding its information set to include an extensive set of high-frequency, economically

grounded realized factor variances. By combining a log-linear specification with adaptive factor

selection, the model remains tractable and scalable for large cross-sections yet flexible enough

to capture multi-factor volatility dynamics, effectively unifying autoregressive persistence with

a multiplicative factor structure.

To motivate the model structure, we document persistence in the key variance components.

As established by Ding et al. (2025) and Herskovic et al. (2016), both the cross-sectional

realized variance (CRV) and the multiplicative residual component exhibit substantial

long-memory characteristics, reflecting persistent temporal dependencies in asset-specific and

market-level volatility dynamics. We extend this analysis to the realized factor variances (FRV)

used in our framework. We investigate whether a similar degree of persistence characterizes the

realized variances of the high-frequency asset pricing factors included in our forecasting

framework.

For each factor in our dataset, we compute the first-order autocorrelation of daily realized

variances. Figure 2 presents the empirical distribution of these autocorrelations, while Table 1

reports its summary statistics. Consistent with the hypothesis of long-memory behavior, we find

that factor-level realized variances are highly persistent, with a median autocorrelation of 0.815

and an interquartile range spanning from 0.776 to 0.846. These findings corroborate the presence

of a strong autoregressive structure in factor volatilities, and support the inclusion of FRV as a

dynamic predictor in volatility forecasting models.

The single-factor framework naturally generalizes to the two or three most informative factor

variances for each stock. Given the candidate set K, let K⋆
i,t = {k⋆i,t,1, k⋆i,t,2, . . . , k⋆i,t,K⋆} ⊆ K

denote the ordered set of factors selected for stock i at date t, where K⋆ = card(K⋆
i,t) ∈ {2, 3} is

the number of selected factors. The elements are ordered by in-sample QLIKE loss with lowest

first so that k⋆i,t,1 is the top-ranked factor.

In this multi-factor framework, the forecasting equation (7) becomes

logRVi,t+h = β0 +
∑

z∈{d,w,m}

(
β
(z)
CRV logCRV

(z)
t + β

(z)
ξ log ξ

(z)
i,t +

∑
k∈K⋆

i,t

β
(z)
k logFRV

(z)
k,t

)
+ εi,t+h.

(9)
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Table 1: Summary statistics of first-order autocorrelation for factor-level realized variances. The reported values are the
25% quantile (Q1), the median, and the 75% quantile (Q3) of the autocorrelation across the factors under construction.

Q1 Median Q3

corr(FRVt, FRVt−1) 0.776 0.815 0.846

Figure 2: Median persistence of factor realized variances. The left panel plots the daily first-order autocorrelation with
its interquartile range (25–75%), while the right panel shows the median autocorrelation function across all high-frequency
factors. The red dashed line marks the 5% critical value.

We restrict K⋆ to {2, 3} in order to balance explanatory power, estimation stability, and

interpretability; because realized factor variances share considerable information, performance

saturates with only a few top factors. The selection routine proceeds iteratively, searching for

the next volatility predictor that adds the most explanatory power. First, we scan the full

universe of candidate series and retain the factor k⋆i,t,1 that delivers the lowest in-sample

QLIKE (or RMSE) loss over the rolling selection window S. Holding k⋆i,t,1 fixed, we re-estimate

the model after adding each remaining candidate one at a time and select the factor k⋆i,t,2 that

achieves the largest additional loss reduction; this completes the specification with K⋆ = 2. If a

third predictor is allowed, we repeat the exercise once more: evaluate every unused candidate

conditional on {k⋆i,t,1, k⋆i,t,2}, and retain k⋆i,t,3, i.e., the factor that yields the largest additional

loss reduction. Thus, each additional factor variance is chosen strictly for the marginal

improvement it brings.

Forecasts for time t + h are formed at the close of day t using CRVt, ξi,t, and FRVk,t,

k ∈ K⋆
i,t, together with their weekly and monthly aggregates. All quantities are Ft-measurable,

so the procedure uses only information available by date t and does not use those beyond t.

2.3 Model Validity I: Adaptive Selection

We now establish the theoretical foundations of the log-HAR framework with adaptive factor

volatilities introduced in Subsections 2.1 and 2.2. We prove in Theorem 1 that the QLIKE-based

selector consistently identifies the true predictive factor, verifying the asymptotic correctness

of the selection rule. We also show how the selection reliability is affected by the variance of
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measurement error proxied by realized quarticity in Theorem 2. The results motivate and support

the validity of our use of robust realized-variance estimators and the factor-volatility block.

We suppose the true data generating process (DGP) for the log integrated variance is

log(IVi,t) = β0 + βCRV log(CIVt) + βξ log(ξIVi,t ) +
∑
k∈K

γk,t · log(FIVk,t) + εi,t, (10)

where CIVt := N−1
∑

i IVi,t, ξIVi,t := IVi,t/CIVt, and

FIVk,t :=

∫ t

t−1
σ2
k,s ds (11)

where σ2
k,s is the instantaneous variance of the factor’s return at time s and γk,t is the loading

on log(FIVk,t), nonzero only for the unique active factor on the window, see Assumption A

below. The observed quantities log(CRVt), log(ξi,t) and log(FRVk,t) are proxies for these latent

terms. If factor k is a tradable linear portfolio with predictable weights wk,s on constituents

with instantaneous covariance Σs, then σ2
k,s = w′

k,sΣswk,s and FIVk,t =
∫ t
t−1w

′
k,sΣswk,s ds.

This justifies the interpretation of FRVk,t as a high-frequency proxy for the latent quantity in

the data generating process.

Notations and Preliminaries. We introduce some notations we shall use throughout. Fix

a stock i, a forecast origin t, and a forecasting horizon h, and recall that K is the index set

for the candidate factors. In our empirical application K = 287, where K = card(K) < ∞.

For a candidate factor k ∈ K, we define the parameter vector of the corresponding model as

θ := (β0, βCRV , βξ, βk) ∈ Θk and the vector of predictors available at time s as Xk
i,s :=(

log(CRVs), log(ξi,s), log(FRVk,s)
)
, augmented with their weekly and monthly aggregates. We

denote by m(Xk
i,s; θ) the log-linear predictor for stock i including factor k, so that

logRVi,s+h = m(Xk
i,s; θ) + εi,s+h, s ∈ {t− S, . . . , t− 1}, (12)

cf. (7). Let the level target and its implied forecast be, respectively, Vi,s := RVi,s+h > 0 and

V̂ k
i,s(θ) := exp{m(Xk

i,s; θ) } > 0. We refer to the single-observation QLIKE loss using

ℓ
(
Vi,s, X

k
i,s; θ

)
:= log

(
V̂ k
i,s(θ)

Vi,s

)
+

Vi,s

V̂ k
i,s(θ)

− 1, (13)

which is well-defined since Vi,s > 0 and V̂ k
i,s(θ) > 0, and write the sample loss

Li,t(k; θ) =
1

S

t−1∑
s=t−S

ℓ
(
Vi,s, X

k
i,s; θ

)
. (14)
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Finally, let

Li,t(k) := inf
θ∈Θk

E
[
ℓ
(
Vi,s, X

k
i,s; θ

) ∣∣Ft−1

]
denote the minimized (conditional) population loss for factor k ∈ K.

We impose the following regularity conditions:

Assumption A.

A1. For each stock i and time t, there is a single true active factor, k⋆i,t, which remains

unchanged over {t − S, . . . , t − 1}. That is, the set of true non-zero coefficients

Si,t = {k ∈ K; γk,t ̸= 0} has only one element so that card(Si,t) = 1.

A2. γk⋆i,s is uniformly bounded away from zero by some positive constant C

inf
s∈[t−S,t−1]

|γk⋆i,s | ≥ C > 0. (15)

A3. Let Z̃i,s = (1, log(CRVs), log(ξi,s)). Let uk⋆i,s and uk,s be the residuals from the population

regressions of log(FRVk⋆i,s
) and log(FRVk,s) on Z̃i,s, respectively. Then, for some κ ∈ [0, 1),

max
k∈K\{k⋆i,s}

∣∣∣corr(uk⋆i,s , uk,s)∣∣∣ ≤ κ < 1. (16)

A4. (i) {(Vi,s, X
k
i,s)} is strictly stationary and α-mixing with α(ℓ) = O(ℓ−c) for some c > 2; (ii)

for each k ∈ K, Θk is compact and θ 7→ ℓ(Vi,s, X
k
i,s, θ) is measurable and continuous a.s.;

(iii) there exists an envelope Mi,s with |ℓ(Vi,s, X
k
i,s, θ)| ≤ Mi,s and E[Mi,s] < ∞.

Remark. Assumption A1 imposes a unique, locally stable volatility driver within the selection

window, which is the minimal identification content needed for a single-factor selector.

Assumption A2 is a standard signal-strength condition ensuring that the contribution of the

true factor does not vanish on the window. Assumption A3 is a restricted non-collinearity

requirement: after partialling out the common block Z̃i,s = (1, log(CRVs), log(ξi,s)), the

innovation in the true factor cannot be replicated by any inactive factor; this rules out

near-collinearity of the factor-specific signals once the common predictors are controlled for.

Under the log-DGP in (10) and the QLIKE loss ℓ(·), it follows that A2 and A3 jointly imply

strict separation of the population risks: there exists ∆min > 0 such that

Li,t(k)− Li,t(k
⋆
i,t) ≥ ∆min for all k ∈ K \ {k⋆i,t}. (17)

Assumption A4 provides a uniform law of large numbers over k ∈ K and θ ∈ Θk:
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stationarity/mixing, compact parameter spaces, and an integrable envelope imply

max
k∈K

sup
θ∈Θk

∣∣Li,t(k; θ)− E
[
ℓ(Vi,s, X

k
i,s, θ)

]∣∣ p−→ 0, (18)

so the sample criteria deviate uniformly little from their population counterparts, see Andrews

(1987), Davidson (1994). Consequently, with K fixed and finite, the sample argmin equals the

population argmin with probability tending to one, which is the main content of Theorem 1

below.

The strong consistency of our selection procedure is now formally presented. The theorem

proves that our QLIKE-based selection rule asymptotically identifies the factor that truly drives

volatility. With sufficiently long windows, the probability that the procedure picks the true factor

converges to one, as desired.

Theorem 1. Let K be the finite set of candidate factors. Suppose k̂⋆i,t is chosen at time t for

stock i according to the minimum QLIKE loss criterion for the model with factor k. That is, for

each k ∈ K and θ ∈ Θk, define

Li,t(k; θ) :=
1

S

t−1∑
s=t−S

ℓ(Vi,s, X
k
i,s, θ) and θ̂k ∈ arg min

θ∈Θk

Li,t(k; θ), (19)

and let

k̂⋆i,t ∈ argmin
k∈K

Li,t(k; θ̂k). (20)

If Assumptions A1 − A4 hold, then the selection procedure identifies the true active factor with

probability tending to one, i.e., as S → ∞ with S = o(T ),

P
(
k̂⋆i,t = k⋆i,t

)
→ 1, (21)

where k⋆i,t denotes the unique active factor of (10) in the window.

Proof. See Appendix A.

2.4 Model Validity II: Adaptive Selection under Measurement Error

We now examine how measurement error in the factor-volatility block affects the adaptive

selection in Subsection 2.3. In our empirical implementation, realized factor variance FRVk,t is

a noisy proxy for the latent factor integrated variance FIVk,t, and the magnitude of this noise

is time varying and captured by realized quarticity (FRQ). Theorem 2 below shows that

measurement error shrinks the population loss gap that drives the selection: the higher the

(conditional) variance of the measurement error for the true factor, the lower the probability

12



that the QLIKE-based selector picks it. This provides a formal rationale for using robust

high-frequency estimators and for including the factor-volatility block.

We impose the following conditions:

Assumption B. B1. For each factor k ∈ K and each s,

log(FRVk,s) = log(FIVk,s) + ek,s,

with E[ek,s | Fs−1] = 0, Var(ek,s | Fs−1) = σ2
k,s, and E[|ek,s|4+δ] < ∞ for some δ > 0.

Moreover, ek,s is conditionally uncorrelated with Z̃i,s = (1, log(CRVs), log(ξi,s)) and with

log(FIVk′,s) for k′ ̸= k.

B2. There exist positive constants 0 < c− ≤ c+ < ∞ such that

c− FIQk,s ≤ σ2
k,s ≤ c+ FIQk,s,

where FIQk,s is the factor integrated quarticity, for which FRQk,s is consistent in the sense

that supk
∣∣FRQk,s/FIQk,s − 1

∣∣ = op(1) uniformly in k.

B3. Let σ̄2
k⋆i,t

:= S−1
∑t−1

s=t−S σ2
k⋆i,s

. There exists σ̄2
0 > 0 such that σ̄2

k⋆i,t
≤ σ̄2

0, and σ̄2
0 can be

made arbitrarily small.

B4. For each k ∈ K, the population risk Ri,t(k, θ) := E[ℓ(Vi,s, X
k
i,s, θ)] is twice continuously

differentiable in the linear predictor m(Xk
i,s; θ) in a neighborhood of the optimum, with a

uniform lower curvature bound: there exists c0 > 0 such that for all k,

Ri,t(k, θ)− inf
ϑ∈Θk

Ri,t(k, ϑ) ≥ c0 E
[(
m(Xk

i,s; θ)−m(Xk
i,s; θ

◦
k)
)2]

,

where θ◦k ∈ argminϑ∈Θk
Ri,t(k, ϑ) under latent inputs.

Remark. The assumptions are mild and specify a weak set of conditions under which the

theory is valid. Assumption B1 specifies an errors-in-variable structure, and B2 ties the

conditional variance of the error to quarticity. Assumption B3 bounds the window-average

noise variance and B4 gives strong convexity of the population QLIKE risk in the log predictor.

We have the following result:

Theorem 2. Under Assumptions A1-A4 and B1-B4, for

σ̄2
k⋆i,t

:=
1

S

t−1∑
s=t−S

σ2
k⋆i,s

and Hi,t(S) := max
k∈K

sup
θ∈Θk

∣∣Li,t(k; θ)−Ri,t(k, θ)
∣∣,

13



there exist a constant independent of S, denoted C1 > 0, such that the following holds: for any

incorrect k ̸= k⋆i,t,

Rη
i,t(k)−Rη

i,t(k
⋆
i,t) ≥ ∆min − C1 σ̄

2
k⋆i,t

+ o(σ̄2
k⋆i,t

), (22)

where ∆min is as in (17) and Rη
i,t(·) denotes the population risk evaluated with the noisy factor

inputs. In addition, we have

P
(
k̂⋆i,t = k⋆i,t

)
≥ P

(
Hi,t(S) < 1

2

[
∆min − C1 σ̄

2
k⋆i,t

])
. (23)

In particular, if σ̄2
k⋆i,t

< ∆min/C1, then Rη
i,t(k) > Rη

i,t(k
⋆
i,t) for all k ̸= k⋆i,t, and as S → ∞ with

S = o(T ), we have

P
(
k̂⋆i,t = k⋆i,t

)
→ 1. (24)

Proof. See Appendix A.

3 Data

We assemble a comprehensive high-frequency dataset of U.S. equities to support the estimation

of realized variance under infill asymptotics. The sample contains all CRSP common shares

(share codes 10 or 11) listed on the NYSE, NASDAQ or AMEX (main exchange codes 1, 2 or

3) from January 2, 2014 to December 29, 2023, covering T = 2516 trading days and N = 5370

unique securities.

Intraday trades and quotes are sourced from the NYSE TAQ database via WRDS and

restricted to regular trading hours (09:30–16:00 Eastern Time).4 Following standard practice,

we apply the filters of Barndorff-Nielsen et al. (2009) to remove observations outside regular

hours, zero or negative prices, obvious quote errors, and extreme outliers. Additional

safeguards remove FINRA Alternative Display Facility prints (exchange “D”) and delete trades

priced beyond the daily CRSP ask-high or bid-low. Prices are then sampled on a uniform

one-second grid between 09:30:00 and 16:00:00 ET using the previous-tick method of Gençay

et al. (2001). The resulting high-frequency returns can naturally be aggregated to any lower

frequency, allowing a straightforward implementation for any realized variance estimator.

Daily opens, closes, shares outstanding, and delisting returns are obtained from CRSP. We

match TAQ symbols to CRSP identifiers (PERMNOs) via the TAQ–CRSP Link table (covering

about 98% of the universe).5 We prioritize CRSP entries: each CRSP record is retained even

if no intraday data exist that day, while unmatched TAQ observations are ignored.6 To ensure
4We use the SAS code from Holden and Jacobsen (2014) to extract tick-by-tick transactions matched with

contemporaneous bid–ask quotes from daily TAQ. Timestamps are recorded in milliseconds until mid-2015 and
microseconds thereafter.

5Residual cases are matched by eight-digit CUSIP from the TAQ Master file.
6Unmatched observations involve fewer than 1% of stocks, almost all nano-caps, so they have little effect on

weighted portfolio returns.
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Figure 3: Cumulative gross daily returns of the Fama–French six factors using official data and our high-frequency
replication. The orange line corresponds to daily returns sourced from the Kenneth R. French Data Library, while the
blue dashed line represents our version constructed from 1-second returns aggregated to daily frequency.

consistency around corporate events, we overwrite the 09:30 and 16:00 TAQ prices with the

CRSP open and close, and we adjust the closing return when delisting returns occur, in line with

Hou et al. (2018).

3.1 High-frequency factors

Leveraging intraday stock information, we replicate a universe of K = 287 high-frequency

factors. The first block contains the six canonical Market (MKT), Size (SMB), Value (HML),

Profitability (RMW), Investment (CMA), and Momentum (UMD) factors, replicated to closely

match the definitions in Fama and French (2018). The second block spans 281

characteristic-sorted portfolios drawn from the large collections of Jensen et al. (2023) (JKP)

and Chen and Zimmermann (2022) (CZ).7

To replicate the Fama–French factors at high frequency, we follow the standard definitions

with NYSE breakpoints, double-sorting on size and annual rebalancing in June. Adapting the

procedure of Aït-Sahalia et al. (2020), we update value-weighted stock returns at 1-second

frequency, and compute portfolio returns. Figure 3 shows that our daily aggregation of the

replicated factors is virtually indistinguishable from the official data.

The remaining portfolios are constructed from a large cross-section of firm characteristics.8 At
7As the Fama–French factors are widely used as benchmarks, we replicate them as faithfully as possible. By

contrast, the broader zoo of factors is built under a uniform methodology to ensure comparability across signals.
8To avoid duplication where JKP and CZ provide conceptually similar characteristics, we retain the JKP

implementation whenever the two series are empirically equivalent (return correlation > 95%) and drop signals
with missing data, yielding 153 JKP and 128 CZ unique factors.
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Figure 4: Histogram of R2 from factor-level monthly return regressions. For each JKP (left) and selected CZ (right) factor,
we regress our aggregated high-frequency portfolio returns on the original low-frequency portfolio over 2014–2023. Results
are reported by economic cluster using the Jensen et al. (2023) taxonomy: CZ factors are mapped to clusters by the highest
average correlation between their CAPM-residual returns and those of the JKP factors within each cluster. Higher R2

indicates closer replication fidelity.

the end of each month, eligible stocks are sorted into terciles by the given characteristic. Following

the empirical design in Jensen et al. (2023), we compute value-weighted returns for the top and

bottom terciles and form a zero-investment high-minus-low spread held over the subsequent

month. To validate our procedure, we compare our replication against the original low-frequency

versions by examining the explanatory power of monthly return regressions. Figure 4 summarizes

the comparison across JKP and CZ factors, demonstrating high fidelity for the whole replication.

A compendium of the sample factors and more details on the dataset are reported in Appendix

B. To ensure comparability with the literature and computational tractability, we compute CRVt

and related quantities using the full-universe definitions as in Ding et al. (2025). As the factors

and CRVt are constructed from the same stock universe as the dependent variable, stock i

mechanically enters both CRVt and the factor realized variance (FRVk,t) used to forecast RVi,t+h.

This own-observation inclusion has negligible impact on forecasts: the leave-one-out measure

CRV
(−i)
t = (N−1)−1

∑
j ̸=iRVj,t differs from CRVt by at most O(1/N), and the factor portfolios

are well diversified. Accordingly, we treat the effect as negligible.

4 Empirical evidence

The primary interest of the empirical analysis is the out-of-sample forecasting performance of

the proposed model. The results of our framework are tested using twelve alternative realized

volatility estimators, selected to encompass a broad spectrum of methodological approaches and

robustness features. These include the classical realized variance (RV) of Andersen and Bollerslev

(1998) at 5-minute and 1-minute frequency, and its 5-minute subsampled version. We consider the
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bipower variation (BPV) introduced by Barndorff-Nielsen and Shephard (2004) and its staggered

definition (Andersen et al., 2007), the realized kernel developed by Barndorff-Nielsen et al. (2008),

the truncated realized variance (TRV) of Mancini (2009) and the pre-averaged measures (PRV,

PBV) of Christensen et al. (2014). We also include more recent contributions like the differenced-

return variance (DV) of Andersen et al. (2023) and the nonparametric price duration variance

(NPDV) proposed by Hong et al. (2023).

While all results are evaluated across the complete set of estimators to ensure robustness,

we adopt the candlestick variance (or wick variance, WV) by Li et al. (2025) as the benchmark

throughout the analysis due to its desirable properties. Specifically, the WV estimator provides

resilience against microstructure noise and accommodates jumps and extreme price movements,

remaining unbiased and robust under a wide range of market conditions. These features make

it especially well-suited for high-frequency volatility estimation and motivate its primary role in

our results.

Our forecasts are constructed using a recursive estimation approach. For each stock i and

day t, we estimate the coefficients of the model in 9 by ordinary least squares over a rolling

window of length L = 1260. We generate h-day-ahead forecasts for the log-realized variance,
̂logRVi,t+h, using the estimated parameters and the daily, weekly, and monthly lags of the

model explanatory components: the market-wide realized variance (CRVt), the corresponding

idiosyncratic component (ξi,t), and the log realized variance of the factors (FRVk⋆i,t
) chosen for

the best performance over the selection window S = 252.

We assess forecasts across three different forecasting horizons h ∈ {1, 5, 22}, corresponding to

predictions for one trading day, week and month ahead. Forecast accuracy is assessed using the

quasi-likelihood (QLIKE) loss function, defined by Patton (2011) and formulated by Bollerslev

et al. (2016) as

QLIKEi =
1

Q

Q∑
q=1

(
log

R̂V i
q

RV i
q

+
RV i

q

R̂V i
q

− 1

)
, (25)

where R̂V
i

q and RV i
q denote the forecasted and realized variances of stock i at horizon q, and Q

is the number of out-of-sample observations.

4.1 Forecasting performance

We evaluate the forecast accuracy over the sample of N = 1041 CRSP stocks having less than

20% zero 5-minute returns between 2014 and 2023, with an evaluation period of Q = 1213

trading days. Realized variance is measured using the candlestick estimator of Li et al. (2025).

Our factor-augmented specifications in (9) are denoted by HAR-1F , HAR-2F , and HAR-3F ,

corresponding respectively to K⋆ = 1, 2, 3. We compare their forecasting performance against

widely adopted benchmarks, namely the standard HAR by Corsi (2009), the quarticity-adjusted
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Table 2: Cross-sectional QLIKE loss distributions of different forecasting models and horizons, using the candlestick variance
estimator of Li et al. (2025). Entries report the 25th percentile (Q1), mean, median (50th), and 75th percentile across
N = 1041 stocks over an evaluation period of Q = 1213 trading days. In every row, bold entries indicate the lowest value.

Forecasting models

HAR SHAR HARQ HAR-MKT MFV-CRV MFV-PC1 HAR-1F HAR-2F HAR-3F

Panel A: h = 1

Q1 0.1406 0.1414 0.1372 0.1415 0.1359 0.1340 0.1293 0.1288 0.1288
Median 0.1701 0.1738 0.1668 0.1728 0.1650 0.1632 0.1570 0.1559 0.1565

Mean 0.1816 0.1867 0.1779 0.1844 0.1767 0.1738 0.1674 0.1666 0.1665
Q3 0.2142 0.2218 0.2102 0.2175 0.2077 0.2041 0.1961 0.1946 0.1949

Panel B: h = 5

Q1 0.2335 0.2427 0.2328 0.2344 0.2286 0.2228 0.2003 0.1950 0.1904
Median 0.2740 0.2827 0.2719 0.2747 0.2630 0.2563 0.2325 0.2246 0.2202

Mean 0.2900 0.2987 0.2865 0.2897 0.2768 0.2715 0.2455 0.2373 0.2313
Q3 0.3270 0.3363 0.3230 0.3269 0.3074 0.2990 0.2746 0.2656 0.2573

Panel C: h = 22

Q1 0.4920 0.4988 0.4927 0.4877 0.4841 0.4860 0.3434 0.3096 0.2654
Median 0.5941 0.5967 0.5928 0.5834 0.5841 0.5797 0.3972 0.3527 0.3039

Mean 0.6179 0.6218 0.6165 0.6105 0.6065 0.6079 0.4133 0.3644 0.3145
Q3 0.7061 0.7163 0.7033 0.6997 0.6948 0.6993 0.4627 0.4094 0.3498

Figure 5: Distribution of QLIKE losses across models and forecast windows. Each boxplot summarizes the QLIKE values
across all stocks using the WV estimator (Li et al., 2025). The models include traditional benchmarks (HAR, HARQ,
SHAR), the market-HAR, the MFV model with common RV and PC1, the proposed one-factor model and its multi-factor
extensions. Boxes represent the 25th, 50th, and 75th percentiles, while whiskers extend to the 1st and 99th percentiles.

HARQ of Bollerslev et al. (2016) and the asymmetric SHAR (Patton and Sheppard, 2015). We

also include the market augmented HAR of Hizmeri et al. (2022) and the multiplicative volatility

by Ding et al. (2025) with common RV (MFV-CRV) and first principal component (MFV-PC1).

In Table 2, the models we propose attain the lowest QLIKE across every quantile of the
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cross-section. The performance strengthens with the number of selected factors and with the

length of the forecasting horizon, with the three-factor model lowering the average loss metric

by up to 48% relative to the best alternative. Figure 5 complements these results by displaying

the full distributions. The factor specifications exhibit a clear downward shift and tighter

interquartile ranges relative to all benchmarks, with compressed upper tails that indicate

robustness to outliers. The improvements are monotone, confirming that the inclusion of

multiple volatility drivers yield lower and more stable forecasting loss. Our findings remain

qualitatively unchanged across all alternative estimators considered9.

We next evaluate the model performance at the individual stock level and assess the statistical

relevance of the observed forecast improvements. Specifically, we compare the QLIKE loss of

the HAR-1F model against that of each benchmark across the stock universe10. We quantify the

fraction of stocks for which our factor model yields a lower QLIKE as the raw outperformance

Out.perf. =
1

N

N∑
i=1

1
{
QLIKEi

HAR−1F < QLIKEi
bm

}
, (26)

where QLIKEi
HAR−1F and QLIKEi

bm denote the QLIKE losses of stock i for the proposed

model and the benchmark model, respectively. To further examine the statistical significance of

the forecast differentials, we implement the Diebold and Mariano (2002) test for each stock. We

evaluate the null hypothesis of equal predictive accuracy using a one-sided test on the difference

between the QLIKE values of the proposed and benchmark models.11 Finally, we report the

proportion of stocks for which our model delivers statistically significant forecast improvements

Sig.Out.perf. =
1

N

N∑
i=1

1 {pi < α} , (27)

where pi is the p-value of the DM test for stock i, and α = 5% is the significance threshold.

Table 3 reports the proportion of cases for which our factor augmented model statistically

outperforms each benchmark. The significative outperformances show pervasive gains for our

one-factor specification relative to the traditional benchmarks across any volatility estimator and

forecasting horizon. For the weekly horizon, more than 95% of stocks exhibit significantly lower

QLIKE using the HAR-1F rather than the traditional HAR model or its univariate variants.

At the monthly horizon, the improvement increases to more than 99% in every case. At the

daily horizon significance remains high but less pronounced, with differences depending on the
9Appendix C verifies robustness to the choice of realized-volatility estimator, forecasting horizon h ∈ {1, 5, 22},

and scoring rule.
10Figure 5 indicates that the multi-factor specifications (HAR-2F, HAR-3F) achieve further reductions in

QLIKE relative to HAR-1F and the benchmarks: the one-factor outputs therefore provide a conservative result.
11The null and alternative hypotheses are H0 : E(QLIKEHAR−1F,t − QLIKEbm,t) ≥ 0 against H1 :

E(QLIKEHAR−1F,t −QLIKEbm,t) < 0. The test statistic is computed as d̄/σ̂(d̄), where d̄ =
∑Q

q=1 dq/Q is the
average loss differential dq = QLIKEHAR−1F,q −QLIKEbm,q, and σ̂(q̄) is its heteroskedasticity-autocorrelation
consistent (HAC) standard error.
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Table 3: Significative outperformance proportion of the one-factor model (HAR-1F) over the benchmark models across
forecasting horizons and volatility estimators between 2014 and 2023. Entries report the percentages of stocks for which
the QLIKE loss of the HAR-1F model is significantly lower than the benchmark performance at the 5% significance level
of the Diebold–Mariano test.

Volatility estimators

Benchmarks RV5 RV5ss RV1 BPV BPVstagRK TRV PRV PBV NPDV DV WV

Panel A: h = 1

HAR 94.7 94.0 92.8 95.8 95.5 97.1 96.0 96.3 96.4 95.6 96.6 96.8
HARQ 64.2 87.9 91.9 96.0 95.9 97.0 95.2 92.5 92.0 94.8 95.5 88.8
SHAR 78.4 93.7 84.1 79.8 82.2 78.0 90.5 73.0 71.2 96.0 84.6 75.2
HAR-MKT 83.7 84.4 85.4 88.0 87.2 89.3 91.3 88.0 90.6 64.6 89.5 90.9
MFV-CRV 64.1 59.6 62.3 65.5 61.5 76.9 57.6 75.6 73.6 57.8 56.4 78.9
MFV-PC1 45.0 92.0 41.8 95.3 95.4 56.2 95.2 96.3 96.9 94.9 96.0 53.1

Panel B: h = 5

HAR 98.2 97.8 97.7 98.1 98.0 97.9 97.6 97.9 97.6 99.1 98.5 99.2
HARQ 97.0 97.8 97.6 98.2 98.2 98.0 97.6 97.4 97.0 99.0 98.0 98.3
SHAR 97.9 97.7 97.0 97.3 97.1 97.3 96.9 96.0 95.1 98.4 97.0 96.7
HAR-MKT 95.1 95.7 96.7 95.3 95.5 95.1 96.2 93.7 93.3 96.6 96.9 97.7
MFV-CRV 84.9 83.0 87.4 85.8 84.8 87.1 86.7 85.3 85.1 93.3 87.9 93.1
MFV-PC1 77.0 92.6 79.0 93.3 93.0 78.2 92.0 94.0 93.7 96.8 93.2 85.1

Panel C: h = 22

HAR 99.1 99.2 99.2 99.5 99.4 99.2 99.8 99.2 99.3 99.7 99.8 99.3
HARQ 99.1 99.2 99.2 99.5 99.5 99.2 99.8 99.2 99.2 99.6 99.8 99.3
SHAR 99.1 99.2 99.2 99.4 99.5 99.2 99.8 99.3 99.3 99.5 99.8 99.3
HAR-MKT 99.3 99.2 99.5 99.5 99.7 99.3 99.8 99.3 99.4 99.6 99.8 99.6
MFV-CRV 99.2 99.4 99.4 99.4 99.6 99.3 99.8 99.4 99.4 99.8 99.6 99.6
MFV-PC1 99.4 99.0 99.5 99.2 99.4 99.4 99.7 98.9 99.1 99.5 99.5 99.6

selected estimator. The pattern is stable across noise and jump robust measures, which indicates

that the results are not driven by the choice of the realized specification. Overall, our model’s

superior statistical performance is robust across different estimators, benchmarks, and forecasting

horizons: these results underscore the added value of flexible factor selection in capturing time-

varying heterogeneity in volatility sources.

4.2 Return and volatility factor selections

We examine whether, within a broad factor universe with K = 287 characteristics, the same

cross-sectional signal tends to drive both expected returns and realized variances for a given

stock and day. For each (i, t), we compare the factor selected by an adaptive return model to

the volatility driver selected by our volatility framework. The return selector is a one-factor

specification with a cross-sectional component and a single characteristic factor return, chosen

to minimize the sum of squared errors over the most recent S = 252 observations within a rolling

window of length L = 1260. The volatility selector is the proposed HAR-1F model.
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Figure 6: Time series of cluster shares implied by the adaptive selectors. Left: share of stocks whose return model selects
a factor from each cluster. Right: corresponding shares for the HAR-1F volatility model using the candlestick estimator of
Li et al. (2025). Stacked areas sum to 100% per day over a period of length Q = 1213 trading days.

We map each factor to one of thirteen economic clusters using the taxonomy of Jensen, Kelly

and Pedersen (2023). JKP portfolios inherit their original labels, while CZ portfolios are assigned

to clusters by the highest average correlation between their CAPM-residual returns and those

of the JKP factors within each cluster. Figure 6 displays, for each trading day, the distribution

across clusters of the factor selected by the return model (left) and by the HAR-1F volatility

model (right), expressed as the share of stocks selecting a factor from each cluster; the stacked

areas sum to 100% per day.

To quantify alignment at the stock–day level, let kRi,t denote the factor chosen by the return

selector and kVi,t the factor chosen by the volatility selector, and let c(k) ∈ {1, . . . , 13} map factors

to clusters. Define the daily proportions

pfactor
t =

1

N

N∑
i=1

1
{
kRi,t = kVi,t

}
and pcluster

t =
1

N

N∑
i=1

1
{
c
(
kRi,t
)
= c
(
kVi,t
) }

.

Across the sample, the median of pfactor
t is below 1%, and the median of pcluster

t is below 10%,

indicating that exact factor matches and even same-cluster matches are rare in the cross-section

on any given day. Consequently, similarities between the left and right panels of Figure 6 reflect

aggregate shifts in cluster composition across stocks, not synchronized selections for the same

stocks. These findings are consistent across forecasting horizons. When the volatility factor is

selected for weekly and monthly forecasts, the chosen clusters concentrate on a smaller subset,

with the strongest concentration during high-volatility regimes. Results are qualitatively robust

to alternative volatility estimators and to loss functions beyond QLIKE.
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Table 4: Economic-value comparison between the HAR-1F model and the benchmarks across daily to monthly forecasting
horizons, using the WV estimator of Li et al. (2025). For each benchmark, entries report the cross-sectional percentage
of stocks for which HAR-1F delivers higher annualized utility than the benchmark (Out.perf.), the percentage for which
the improvement is statistically significant at the 5% level using a two-sided Diebold–Mariano test (Sig.Out.perf.), and the
percentage for which the utility difference exceeds 1 basis point per year (Diff ≥ 1 bp). Values in parentheses give the
corresponding percentages in which the benchmark outperforms the HAR-1F model under the same criterion.

Benchmarks Out.perf. (%) Sig.Out.perf. (%) Diff ≥ 1 bp (%)

Panel A: h = 1

HAR 99.3 (0.7) 96.8 (0.0) 98.4 (0.5)
HARQ 97.5 (2.5) 88.8 (0.5) 94.1 (1.5)
SHAR 91.9 (8.1) 75.2 (0.8) 88.0 (3.6)
HAR-MKT 99.2 (0.8) 90.9 (0.0) 94.4 (0.5)
MFV-CRV 93.9 (6.1) 78.9 (0.2) 82.7 (0.4)
MFV-PC1 85.0 (15.0) 53.1 (2.3) 68.8 (1.7)

Panel B: h = 5

HAR 99.9 (0.1) 99.2 (0.1) 99.8 (0.1)
HARQ 99.9 (0.1) 98.3 (0.1) 99.8 (0.1)
SHAR 99.3 (0.7) 96.7 (0.1) 99.3 (0.2)
HAR-MKT 99.9 (0.1) 97.7 (0.1) 99.6 (0.1)
MFV-CRV 98.9 (1.1) 93.1 (0.2) 98.0 (0.5)
MFV-PC1 95.9 (4.1) 85.1 (1.2) 94.6 (2.3)

Panel C: h = 22

HAR 99.9 (0.1) 99.3 (0.0) 99.8 (0.1)
HARQ 99.9 (0.1) 99.3 (0.0) 99.8 (0.1)
SHAR 99.8 (0.2) 99.3 (0.0) 99.8 (0.2)
HAR-MKT 99.9 (0.1) 99.6 (0.0) 99.8 (0.2)
MFV-CRV 100.0 (0.0) 99.6 (0.0) 99.9 (0.0)
MFV-PC1 100.0 (0.0) 99.6 (0.0) 99.9 (0.0)

4.3 Economic significance

Beyond statistical accuracy, an important question is whether improvements in volatility

forecasting translate into economically meaningful gains. To address this, we adopt the

utility-based evaluation framework introduced by Bollerslev et al. (2018), which links variance

forecasts to the performance of volatility-managed investment strategies. Holding stock i, the

investor’s utility expressed in annualized percentage terms is

U i =
1

Q

Q∑
q=1

8%

√√√√RV i
q

R̂V i
q

− 4%
RV i

q

R̂V i
q

 , (28)

where RV i
q and R̂V i

q denote, respectively, the realized variance on day q and its forecasted value.

The first term captures the expected return component, inversely scaled by conditional volatility,

while the second term penalizes variance under a mean-variance investor framework with a risk

aversion level implied by a 4% volatility penalty.
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Table 4 summarizes the economic performance of our factor-switching model relative to the

considered benchmarks across all forecasting horizons. For each comparison, we report three

measures: (i) the percentage of stocks for which the factor model yields higher utility than

the benchmark (Out.perf.), (ii) the percentage of stocks for which the utility improvement is

statistically significant at the 5% level based on a DM test (Sig.Out.perf.), and (iii) the percentage

of stocks for which the utility difference exceeds 1 basis point annually, a threshold used to capture

economically significant improvements.

The results demonstrate that the predictive gains of our model translate into substantial

economic value. Across all benchmark comparisons and forecast horizons, the factor-switching

model consistently improves investor utility for the large majority of stocks, with improvements

that are both statistically significant and economically meaningful. These findings reinforce the

practical value of incorporating adaptive factor selection in the modeling of stock volatility, and

remind that more accurate volatility forecasts yield tangible benefits in portfolio outcomes.

5 Conclusion

This paper introduces a novel volatility forecasting framework that integrates high-frequency

factor information with a dynamic selection mechanism to improve the prediction of individual

stock variances. By extending a multiplicative volatility model with heterogeneous

autoregressive lags and leveraging a broad cross-section of 287 factor volatilities, our approach

achieves substantial gains in forecast accuracy relative to standard benchmarks.

The key contribution lies in demonstrating that volatility is not uniformly driven by a fixed

set of risk sources but is instead shaped by time-varying, asset-specific exposures to distinct

factor volatilities. In this sense, our model attempts to contribute to the methodological gap

between volatility modeling and asset pricing.

Beyond the econometric gains, our results underscore the feasibility and informativeness

of replicating factor portfolios at ultra-high frequencies, opening a path toward more granular

assessments of systematic volatility. Future research could extend this framework to multivariate

volatility modeling and examine the implications for portfolio risk management and derivative

pricing.
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Appendix to

Volatility Forecasting Factors



A Proof of main results

Proof of Theorem 1. Recall that, for any candidate factor k ∈ K, stock i and time t, we write

the parameter vector for the corresponding model as θ := (β0, βCRV , βξ, βk) ∈ Θk, and

Li,t(k; θ) =
1

S

t−1∑
s=t−S

ℓ(Vi,s, X
k
i,s, θ). (1)

The estimated parameter vector, θ̂k, is the M-estimator that minimizes this sample loss:

θ̂k = argmin
θ∈Θk

Li,t(k; θ). (2)

Showing that P(k̂⋆i,t = k⋆i,t) → 1 as S → ∞, where k⋆i,t is the index of the true active factor

is equivalent to showing that for any incorrect factor k ̸= k⋆i,t, the probability of the event

{Li,t(k
⋆
i,t; θ̂k⋆i,t) < Li,t(k; θ̂k)} converges to 1.

We will prove that the difference Li,t(k; θ̂k)−Li,t(k
⋆
i,t; θ̂k⋆i,t) is strictly positive with probability

approaching one.

Given Li,t(k) = infθ∈Θk
E[ℓ(Vi,s, X

k
i,s, θ)], the minimized population loss for model k, by

Assumptions A1-A3 there exists a unique population minimizer at the true factor k⋆i,t. Hence,

there exists a fixed gap ∆f ≡ Li,t(k)−Li,t(k
⋆
i,t) > 0 for all k ̸= k⋆i,t. Let ∆min = mink ̸=k⋆i,t

∆f > 0.

Now we have,

Li,t(k; θ̂k)− Li,t(k
⋆
i,t; θ̂k⋆i,t)

=
(
Li,t(k)− Li,t(k

⋆
i,t)
)
+
(
Li,t(k; θ̂k)− Li,t(k)

)
−
(
Li,t(k

⋆
i,t; θ̂k⋆i,t)− Li,t(k

⋆
i,t)
)

≥ ∆min +
(
Li,t(k; θ̂k)− Li,t(k)

)
−
(
Li,t(k

⋆
i,t; θ̂k⋆i,t)− Li,t(k

⋆
i,t)
)

≥ ∆min −
∣∣∣Li,t(k; θ̂k)− Li,t(k)

∣∣∣− ∣∣∣Li,t(k
⋆
i,t; θ̂k⋆i,t)− Li,t(k

⋆
i,t)
∣∣∣

≥ ∆min − 2 ·max
k∈K

sup
θ∈Θk

∣∣∣Li,t(k; θ)− E ℓ(Vi,s, X
k
i,s, θ)

∣∣∣ .
Let Hi,t(S) ≡ maxk∈K supθ∈Θk

∣∣∣Li,t(k; θ)− E ℓ(Vi,s, X
k
i,s, θ)

∣∣∣. By Assumptions A4, the uniform

law of large numbers applies, Andrews (1987), Davidson (1994), and this maximum deviation

converges in probability to zero:

Hi,t(S)
p→ 0 as S → ∞. (3)

Therefore, for any ϵ > 0 and any δ > 0, there exists a window size W0 such that for all S > W0,

we have P(Hi,t(S) < δ) > 1− ϵ by definition.
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Choose δ = ∆min/2. Then for S > W0, with probability greater than 1− ϵ, we have:

Li,t(k; θ̂k)− Li,t(k
⋆
i,t; θ̂k⋆i,t) ≥ ∆min − 2 ·Hi,t(S) > ∆min − 2 · (∆min/2) = 0. (4)

As a result, for any k ̸= k⋆i,t, the sample loss for model k is strictly greater than the sample loss

for the true model k⋆i,t with probability approaching 1. Therefore, the minimizer of the sample

loss must be k⋆i,t:

P
(
argmin

k∈K
Li,t(k; θ̂k) = k⋆i,t

)
→ 1 as S → ∞. (5)

This completes the proof. □

Proof of Theorem 2. Write R0
i,t(k, θ) for the population risk with latent factor inputs and

Rη
i,t(k, θ) for the same risk with noisy inputs. Let

θ◦k⋆i,t ∈ argmin
θ

R0
i,t(k

⋆
i,t, θ)

and

θηk⋆i,t
∈ argmin

θ
Rη

i,t(k
⋆
i,t, θ).

Define L0
i,t(k) := infθ R

0
i,t(k, θ) and Lη

i,t(k) := infθ R
η
i,t(k, θ). By A1–A3 there is a unique

minimizer at k⋆i,t in the latent case with gap ∆min > 0.

Under B1 and B4, perturbing the factor regressor of the k⋆i,t-model by ek⋆i,s changes the linear

predictor by γk⋆i,sek⋆i,s . A second-order expansion of Rη
i,t(k

⋆
i,t, θ) around θ◦k⋆i,t

and the curvature

bound in B4 yield

Lη
i,t(k

⋆
i,t)− L0

i,t(k
⋆
i,t) ≥ c0 E

[
γ2k⋆i,se

2
k⋆i,s

]
≥ c0C

2 σ̄2
k⋆i,t

(1 + o(1)), (6)

uniformly on the window, using the bound |γk⋆i,s | ≥ C > 0 from Assumption A2 and E[e2k⋆i,s ] =

σ2
k⋆i,s

from Assumption B1.

For any k ̸= k⋆i,t, the j-model’s factor input does not contain ek⋆i,s ; under Assumptions B1,

B4 and bounded moments, the perturbation of its best attainable risk is at most of order σ̄2
k⋆i,t

due to cross-effects via Z̃i,s, i.e.,

∣∣Lη
i,t(k)− L0

i,t(k)
∣∣ ≤ C2 σ̄

2
k⋆i,t

(1 + o(1)) (7)

for some constant C2 > 0 independent of S.
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Combining the two steps,

Lη
i,t(k)− Lη

i,t(k
⋆
i,t) ≥

(
L0
i,t(k)− L0

i,t(k
⋆
i,t)
)︸ ︷︷ ︸

≥ ∆min

− (C2 + c0C
2) σ̄2

k⋆i,t
+ o(σ̄2

k⋆i,t
), (8)

which is (22) with C1 := C2 + c0C
2.

Let Hi,t(S) := maxk∈K supθ∈Θk

∣∣Li,t(k; θ) − Rη
i,t(k, θ)

∣∣. By Assumption A4, Hi,t(S)
p−→ 0 as

S → ∞. Therefore, with probability at least P
(
Hi,t(S) <

1
2 [∆min−C1σ̄

2
k⋆i,t

]
)
, we have Li,t(k; θ̂k) >

Li,t(k
⋆
i,t; θ̂k⋆i,t) for all k ̸= k⋆i,t. Finally, B2 and B3 imply σ̄2

k⋆i,t
is (up to constants) the window-

average of FIQk⋆i,s
and can be proxied by the window-average of FRQk⋆i,s

, yielding the rest of

the statement in Theorem 2. □

B Data

This appendix documents the datasets and summary properties used throughout the paper. We

report descriptive statistics for 1-second stock returns and their time-variation and report cross-

sectional quantiles of annualized realized volatility for both stocks and factors. We then show

how resampling creates aggregation bias for high-minus-low style portfolios and provide an exact

aggregation rule. The section concludes with the catalog of the high-frequency factors included

in the sample.

B.1 Descriptive statistics

This section provides descriptive statistics for the time series used in the empirical analysis.

Figure 7 summarizes cross-sectional features of 1-second stock returns. The distribution of

average returns is tightly concentrated near zero, with a slight positive median and mild right

skew, indicating negligible drift at the one-second horizon. Standard deviations cluster at a few

basis points and display a pronounced right tail, consistent with substantial heterogeneity in

intraday volatility across firms. The share of nonzero one-second returns is low for most stocks,

reflecting price discreteness and more sparse updates, but exhibits a wide upper tail associated

with more actively traded names.

Figure 8 tracks the daily evolution of the cross-section of one-second stock returns using the

5th, 25th, 50th, 75th, and 95th percentiles. The median remains essentially at zero throughout,

while dispersion fluctuates over time, widening sharply during market stress. The pattern

highlights time-variation in both scale and tail thickness, with negative skew in drawdowns.

Table 5 reports, by calendar year, cross-sectional quantiles of annualized daily realized

volatility for the stock universe and for the long–short factor portfolios. By construction, stocks

are substantially more volatile than factors: pre-2020 medians lie in the 16–20% range versus

3–5% for factors, and both panels exhibit a pronounced surge in 2020 (medians 29.7% for
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Figure 7: Stock returns at the one-second horizon: cross-sectional histograms of the average returns (in basis points),
their standard deviation (bps), and the percentage share of nonzero returns. For readability, the top and bottom 1%
of observations are trimmed. The solid vertical line marks the cross-sectional median and the shaded band spans the
interquartile range (25th to 75th percentiles).

Figure 8: Stock returns at the one-second horizon: time series of cross-sectional percentiles (p05, p25, p50, p75, p95),
expressed in percent. Percentiles are computed at 1-second frequency across the stock universe.

Table 5: Cross-sectional distribution of annualized realized volatility across, respectively, sample stocks and factors. Values
are reported in percentage by year for median and 10th, 25th, 75th and 90th quantiles.

Stocks Factors

p10 p25 p50 p75 p90 p10 p25 p50 p75 p90

2014 9.64 12.21 16.26 22.49 31.10 2.44 2.84 3.44 4.30 5.56
2015 10.86 13.58 17.78 24.29 34.11 2.82 3.33 4.08 5.07 6.34
2016 10.69 13.67 18.52 26.22 37.52 2.79 3.37 4.28 5.63 7.37
2017 9.50 11.97 16.03 22.10 30.64 2.53 2.97 3.60 4.40 5.37
2018 11.93 14.99 20.03 27.56 37.25 3.25 3.93 4.97 6.63 8.92
2019 12.05 14.92 19.36 25.76 34.43 3.08 3.64 4.52 5.62 6.87
2020 16.28 21.32 29.69 44.12 67.40 4.66 6.04 8.26 11.58 15.77
2021 14.05 17.72 23.53 32.06 43.03 4.73 5.94 7.70 9.89 12.36
2022 17.05 21.07 27.22 35.91 46.23 5.71 7.07 9.20 12.18 15.60
2023 13.24 16.24 20.91 27.65 36.54 4.37 5.22 6.55 8.36 10.30

stocks and 8.3% for factors). The dispersion widens similarly, with the interquartile range

reaching about 23 percentage points for stocks and 5 percentage points for factors during the

pandemic, before narrowing in the subsequent years. The parallel movements underscore

common volatility conditions across underlying equities and factor portfolios.
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B.2 Aggregation bias for HML-style factors

High-frequency factor returns are recorded at one-second resolution, yet many empirical tasks

(e.g., computing 5-minute realized variance or evaluating the factor replication over daily and

monthly horizons) require resampling to coarser grids. For high-minus-low (and

low-minus-high) style portfolios, compounding the factor return itself is mathematically

incorrect because cross-product terms appear when simple returns of different portfolios are

multiplied.

The problem is generic: it arises whenever a combination of portfolio returns is cumulated

from a fine grid to any lower frequency. Figure 9 illustrates the bias with the Fama–French six

factors. We obtain the daily and monthly versions of each factor from the Kenneth R. French

data library, cumulate the daily series up to monthly frequency, and compare the result with

the monthly returns available in the library. We also include the replicated 1-second returns

aggregated to the same horizon. The market factor lines up perfectly, whereas high-minus-low

style factors diverge.

The algebra is straightforward for a single portfolio. Let R1 = r0,1 and R2 = r1,2 denote two

successive simple returns given t ∈ {0, 1, 2}; compounding yields

(1 +R1)(1 +R2) = 1 +R1 +R2 +R1R2 =⇒ R12 = R1 +R2 +R1R2. (9)

Consider a high-minus-low factor formed each sub-period as RHML
t = RH

t −RL
t . Cumulating

the factor returns after differencing at a higher frequency, we obtain

1 +RHML
12 = (1 +RH

1 −RL
1 )(1 +RH

2 −RL
2 )

= 1 +RHML
1 +RHML

2 +RHML
1 RHML

2 −
(
RH

1 RL
2 +RL

1R
H
2 − 2RL

1R
L
2

)
. (10)

The additional terms −RH
1 RL

2 , −RL
1R

H
2 , and 2RL

1R
L
2 have no counterpart in the

single-portfolio identity (9). Each is second-order in intraday returns, yet their effect cumulates

with both sampling frequency and portfolios number, so aggregating a pre-differenced HML

series will generally diverge from the true low-frequency spread. To eliminate this distortion,

we compound the high- and low-leg portfolios independently and take their difference only at

the target horizon. This rule preserves exact aggregation from one-second data to any lower

frequency used in the analysis.
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Figure 9: Cumulative gross monthly returns for the Fama–French six factors between 2014 and 2023. Green thick lines
are the benchmark series downloaded at monthly frequency from the Kenneth R. French data library, orange solid lines
compound the library’s daily returns to the monthly horizon and blue dashed lines aggregate the 1-second replication.
The market factor (MKT) aggregates exactly, while the five high-minus-low (or low-minus-high) spreads diverge, with the
discrepancy widening as the starting sampling interval shortens.
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B.3 Sample factors

Table 6: Catalog of the asset-pricing anomalies replicated at high frequency for this study. Columns list the original study and mnemonic, a brief description of the signal, its economic theme,
and the data library sourced for replication. The table continues across pages.

Reference Factor Description Cluster Universe

Abarbanell and Bushee (1998) dgp_dsale Change gross margin minus change sales Quality JKP

Abarbanell and Bushee (1998) dsale_dinv Change sales minus change Inventory Profit Growth JKP

Abarbanell and Bushee (1998) dsale_drec Change sales minus change receivables Profit Growth JKP

Abarbanell and Bushee (1998) dsale_dsga Change sales minus change SG&A Profit Growth JKP

Abarbanell and Bushee (1998) sale_emp_gr1 Labor force efficiency Profit Growth JKP

Abarbanell and Bushee (1998) ChInvIA Change in capital inv (ind adj) Low Leverage CZ

Abarbanell and Bushee (1998) GrSaleToGrInv Sales growth over inventory growth Quality CZ

Abarbanell and Bushee (1998) GrSaleToGrOverhead Sales growth over overhead growth Value CZ

Ali et al. (2003) ivol_capm_252d Idiosyncratic volatility from the CAPM (252 days) Low Risk JKP

Alwathainani (2009) EarningsConsistency Earnings consistency Quality CZ

Amihud (2002) ami_126d Amihud Measure Size JKP

Amihud and Mendelson (1986) BidAskSpread Bid-ask spread Low Leverage CZ

Anderson and Garcia-Feijoo (2006) capx_gr2 CAPEX growth (2 years) Investment JKP

Anderson and Garcia-Feijoo (2006) capx_gr3 CAPEX growth (3 years) Investment JKP

Anderson and Garcia-Feijoo (2006) grcapx Change in capex (two years) Investment CZ

Anderson and Garcia-Feijoo (2006) grcapx3y Change in capex (three years) Investment CZ

Ang et al. (2006) ivol_ff3_21d Idiosyncratic volatility from the Fama-French 3-factor model Low Risk JKP

Ang et al. (2006) rvol_21d Return volatility Low Risk JKP

Ang et al. (2006) betadown_252d Downside beta Low Risk JKP

Ang et al. (2006) CoskewACX Coskewness using daily returns Profitability CZ

Asness et al. (2019) qmj Quality minus Junk: Composite Quality JKP

Asness et al. (2019) qmj_growth Quality minus Junk: Growth Quality JKP

Asness et al. (2019) qmj_prof Quality minus Junk: Profitability Quality JKP
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Reference Factor Description Cluster Universe

Asness et al. (2019) qmj_safety Quality minus Junk: Safety Quality JKP

Asness et al. (2020) corr_1260d Market correlation Seasonality JKP

Asness et al. (2020) rmax5_rvol_21d Highest 5 days of return scaled by volatility Short-Term Reversal JKP

Baik and Ahn (2007) OrderBacklogChg Change in order backlog Profitability CZ

Balakrishnan et al. (2010) niq_at Quarterly return on assets Quality JKP

Balakrishnan et al. (2010) roaq Return on assets (qtrly) Profitability CZ

Bali et al. (2017) rmax5_21d Highest 5 days of return Low Risk JKP

Bali et al. (2011) rmax1_21d Maximum daily return Low Risk JKP

Bali et al. (2016) iskew_ff3_21d Idiosyncratic skewness from the Fama-French 3-factor model Short-Term Reversal JKP

Bali et al. (2016) rskew_21d Total skewness Short-Term Reversal JKP

Bali et al. (2016) ReturnSkew3F Idiosyncratic skewness (3F model) Short-Term Reversal CZ

Ball et al. (2016) cop_atl1 Cash-based operating profits-to-lagged book assets Quality JKP

Ball et al. (2016) op_atl1 Operating profits-to-lagged book assets Quality JKP

Ball et al. (2016) CBOperProf Cash-based operating profitability Profitability CZ

Ball et al. (2016) OperProfRD Operating profitability R&D adjusted Profitability CZ

Banz (1981) market_equity Market Equity Size JKP

Barbee Jr et al. (1996) sale_me Sales-to-market Value JKP

Barry and Brown (1984) FirmAge Firm age based on CRSP Low Risk CZ

Barth et al. (1999) ni_inc8q Number of consecutive quarters with earnings increases Quality JKP

Basu (1983) ni_me Earnings-to-price Value JKP

Basu (1977) EP Earnings-to-Price Ratio Value CZ

Belo and Lin (2012) inv_gr1 Inventory growth Investment JKP

Belo and Lin (2012) InvGrowth Inventory Growth Investment CZ

Belo et al. (2014) emp_gr1 Hiring rate Investment JKP

Belo et al. (2014) BrandInvest Brand capital investment Profitability CZ

Bhandari (1988) debt_me Debt-to-market Value JKP

Blitz et al. (2011) resff3_12_1 Residual momentum t-12 to t-1 Momentum JKP
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Reference Factor Description Cluster Universe

Blitz et al. (2011) resff3_6_1 Residual momentum t-6 to t-1 Momentum JKP

Blitz et al. (2011) ResidualMomentum Momentum based on FF3 residuals Momentum CZ

Blume and Husic (1973) Price Price Size CZ

Bouchaud et al. (2019) ocf_at Operating cash flow to assets Profitability JKP

Bouchaud et al. (2019) ocf_at_chg1 Change in operating cash flow to assets Profit Growth JKP

Boudoukh et al. (2007) eqnpo_me Net payout yield Value JKP

Boudoukh et al. (2007) eqpo_me Payout yield Value JKP

Boudoukh et al. (2007) NetPayoutYield Net Payout Yield Value CZ

Boudoukh et al. (2007) PayoutYield Payout Yield Value CZ

Bradshaw et al. (2006) dbnetis_at Net debt issuance Seasonality JKP

Bradshaw et al. (2006) eqnetis_at Net equity issuance Value JKP

Bradshaw et al. (2006) netis_at Net total issuance Value JKP

Bradshaw et al. (2006) NetDebtFinance Net debt financing Debt Issuance CZ

Bradshaw et al. (2006) NetEquityFinance Net equity financing Low Risk CZ

Bradshaw et al. (2006) XFIN Net external financing Low Risk CZ

Brennan et al. (1998) dolvol_126d Dollar trading volume Size JKP

Ang et al. (2006) FEPS Analyst earnings per share Profitability CZ

Chan et al. (1996) AnnouncementReturn Earnings announcement return Momentum CZ

Chan et al. (1996) REV6 Earnings forecast revisions Momentum CZ

Chan et al. (2001) rd_me R&D-to-market Size JKP

Chan et al. (2001) rd_sale R&D-to-sales Low Leverage JKP

Chan et al. (2001) AdExp Advertising Expense Value CZ

Chan et al. (2001) RD R&D over market cap Low Leverage CZ

Chandrashekar et al. (2009) CashProd Cash Productivity Quality CZ

Chen et al. (2002) DelBreadth Breadth of ownership Momentum CZ

Chordia et al. (2001) VolSD Volume Variance Size CZ

Chordia et al. (2001) dolvol_var_126d Coefficient of variation for dollar trading volume Profitability JKP
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Reference Factor Description Cluster Universe

Chordia et al. (2001) turnover_var_126d Coefficient of variation for share turnover Profitability JKP

Cohen and Lou (2012) retConglomerate Conglomerate return Investment CZ

Cohen et al. (2013) RDAbility R&D ability Value CZ

Cooper et al. (2008) at_gr1 Asset Growth Investment JKP

Cooper et al. (2008) AssetGrowth Asset growth Investment CZ

Corwin and Schultz (2012) bidaskhl_21d The high-low bid-ask spread Low Leverage JKP

Da and Warachka (2011) EarningsForecastDisparity Long-vs-short EPS forecasts Quality CZ

Daniel and Titman (2006) eqnpo_12m Equity net payout Value JKP

Daniel and Titman (2006) CompEquIss Composite equity issuance Value CZ

Daniel and Titman (2006) IntanBM Intangible return using BM Quality CZ

Daniel and Titman (2006) IntanCFP Intangible return using CFtoP Quality CZ

Daniel and Titman (2006) IntanEP Intangible return using EP Quality CZ

Daniel and Titman (2006) IntanSP Intangible return using Sale2P Quality CZ

Daniel and Titman (2006) ShareIss5Y Share issuance (5 year) Investment CZ

Datar et al. (1998) turnover_126d Share turnover Low Risk JKP

De Bondt and Thaler (1985) ret_60_12 Long-term reversal Investment JKP

De Bondt and Thaler (1985) LRreversal Long-run reversal Investment CZ

De Bondt and Thaler (1985) MRreversal Medium-run reversal Quality CZ

Dechow et al. (2001) ShortInterest Short Interest Size CZ

Dechow et al. (2004) eq_dur Equity duration Value JKP

Dechow et al. (2004) EquityDuration Equity Duration Value CZ

Desai et al. (2004) ocf_me Operating cash flow-to-market Value JKP

Dichev (1998) o_score Ohlson O-score Profitability JKP

Dichev (1998) z_score Altman Z-score Low Leverage JKP

Diether et al. (2002) ForecastDispersion EPS Forecast Dispersion Low Risk CZ

Dimson (1979) beta_dimson_21d Dimson beta Low Risk JKP

Doyle et al. (2003) ExclExp Excluded Expenses Profitability CZ
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Reference Factor Description Cluster Universe

Eisfeldt and Papanikolaou (2013) OrgCap Organizational capital Low Risk CZ

Elgers et al. (2001) sfe Earnings Forecast to price Value CZ

Fairfield et al. (2003) lnoa_gr1a Change in long-term net operating assets Investment JKP

Fairfield et al. (2003) GrLTNOA Growth in long term operating assets Quality CZ

Fama and French (2018) cma Asset growth Investment FF6

Fama and French (2018) hml Book assets-to-market value Value FF6

Fama and French (2018) mkt Value-weighted excess market return Market FF6

Fama and French (2018) rmw Operating profits-to-book equity Profitability FF6

Fama and French (2018) smb Market capitalization Size FF6

Fama and French (2018) umd Price momentum t-12 to t-1 Momentum FF6

Eugene and French (1992) at_be Book leverage Low Leverage JKP

Eugene and French (1992) at_me Assets-to-market Value JKP

Fama and French (2015) ope_be Operating profits-to-book equity Profitability JKP

Eugene and French (1992) BMdec Book to market using December ME Value CZ

Eugene and French (1992) BookLeverage Book leverage (annual) Low Leverage CZ

Fama and French (2006) OperProf operating profits / book equity Profitability CZ

Fama and MacBeth (1973) beta_60m Market Beta Low Risk JKP

Fama and MacBeth (1973) Beta CAPM beta Size CZ

Foster et al. (1984) niq_su Standardized earnings surprise Profit Growth JKP

Foster et al. (1984) EarningsSurprise Earnings Surprise Momentum CZ

Francis et al. (2004) earnings_variability Earnings variability Low Risk JKP

Francis et al. (2004) ni_ar1 Earnings persistence Debt Issuance JKP

Francis et al. (2004) ni_ivol Earnings volatility Low Leverage JKP

Frankel and Lee (1998) ival_me Intrinsic value-to-market Value JKP

Frankel and Lee (1998) AOP Analyst Optimism Value CZ

Frankel and Lee (1998) AnalystValue Analyst Value Value CZ

Frankel and Lee (1998) PredictedFE Predicted Analyst forecast error Value CZ
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Reference Factor Description Cluster Universe

Franzoni and Marin (2006) FR Pension Funding Status Profitability CZ

Frazzini and Pedersen (2014) betabab_1260d Frazzini-Pedersen market beta Low Risk JKP

George and Hwang (2004) prc_highprc_252d Current price to high price over last year Momentum JKP

Moskowitz and Grinblatt (1999) IndMom Industry Momentum Momentum CZ

Hafzalla et al. (2011) oaccruals_ni Percent operating accruals Accruals JKP

Hafzalla et al. (2011) taccruals_ni Percent total accruals Accruals JKP

Hafzalla et al. (2011) PctAcc Percent Operating Accruals Accruals CZ

Hafzalla et al. (2011) PctTotAcc Percent Total Accruals Investment CZ

Hahn and Lee (2009) tangibility Asset tangibility Low Leverage JKP

Hahn and Lee (2009) tang Tangibility Size CZ

Harvey and Siddique (2000) coskew_21d Coskewness Seasonality JKP

Harvey and Siddique (2000) Coskewness Coskewness Value CZ

Haugen and Baker (1996) at_turnover Capital turnover Quality JKP

Haugen and Baker (1996) ni_be Return on equity Profitability JKP

Haugen and Baker (1996) RoE net income / book equity Profitability CZ

Haugen and Baker (1996) VarCF Cash-flow to price variance Size CZ

Haugen and Baker (1996) VolMkt Volume to market equity Low Risk CZ

Haugen and Baker (1996) VolumeTrend Volume Trend Low Risk CZ

Hawkins et al. (1984) AnalystRevision EPS forecast revision Momentum CZ

Heston and Sadka (2008) seas_11_15an Years 11-15 lagged returns, annual Seasonality JKP

Heston and Sadka (2008) seas_11_15na Years 11-15 lagged returns, nonannual Seasonality JKP

Heston and Sadka (2008) seas_16_20an Years 16-20 lagged returns, annual Seasonality JKP

Heston and Sadka (2008) seas_16_20na Years 16-20 lagged returns, nonannual Accruals JKP

Heston and Sadka (2008) seas_1_1an Year 1-lagged return, annual Profit Growth JKP

Heston and Sadka (2008) seas_1_1na Year 1-lagged return, nonannual Momentum JKP

Heston and Sadka (2008) seas_2_5an Years 2-5 lagged returns, annual Seasonality JKP

Heston and Sadka (2008) seas_2_5na Years 2-5 lagged returns, nonannual Investment JKP
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Reference Factor Description Cluster Universe

Heston and Sadka (2008) seas_6_10an Years 6-10 lagged returns, annual Seasonality JKP

Heston and Sadka (2008) seas_6_10na Years 6-10 lagged returns, nonannual Low Risk JKP

Heston and Sadka (2008) Mom12mOffSeason Momentum without the seasonal part Momentum CZ

Heston and Sadka (2008) MomSeason11YrPlus Return seasonality years 11 to 15 Quality CZ

Hirshleifer et al. (2004) noa_at Net operating assets Debt Issuance JKP

Hirshleifer et al. (2004) noa_gr1a Change in net operating assets Investment JKP

Hirshleifer et al. (2004) NOA Net Operating Assets Profitability CZ

Hirshleifer et al. (2004) dNoa change in net operating assets Investment CZ

Hou (2007) EarnSupBig Earnings surprise of big firms Profitability CZ

Hou (2007) IndRetBig Industry return of big firms Momentum CZ

Hou and Robinson (2006) Herf Industry concentration (sales) Low Risk CZ

Hou and Robinson (2006) HerfAsset Industry concentration (assets) Low Risk CZ

Hou and Robinson (2006) HerfBE Industry concentration (equity) Low Risk CZ

Hou et al. (2015) niq_be Quarterly return on equity Profitability JKP

Huang (2009) ocfq_saleq_std Cash flow volatility Low Risk JKP

Jegadeesh (1990) ret_1_0 Short-term reversal Short-Term Reversal JKP

Jegadeesh and Livnat (2006) saleq_su Standardized Revenue surprise Profit Growth JKP

Jegadeesh and Livnat (2006) RevenueSurprise Revenue Surprise Momentum CZ

Jegadeesh and Titman (1993) ret_12_1 Price momentum t-12 to t-1 Momentum JKP

Jegadeesh and Titman (1993) ret_6_1 Price momentum t-6 to t-1 Momentum JKP

Jegadeesh and Titman (1993) Mom12m Momentum (12 month) Momentum CZ

Jegadeesh et al. (2004) ChangeInRecommendation Change in recommendation Size CZ

Jegadeesh and Titman (1993) ret_3_1 Price momentum t-3 to t-1 Momentum JKP

Jegadeesh and Titman (1993) ret_9_1 Price momentum t-9 to t-1 Momentum JKP

Jensen et al. (2023) cop_at Cash-based operating profits-to-book assets Quality JKP

Jensen et al. (2023) gp_atl1 Gross profits-to-lagged assets Quality JKP

Jensen et al. (2023) iskew_capm_21d Idiosyncratic skewness from the CAPM Short-Term Reversal JKP
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Reference Factor Description Cluster Universe

Jensen et al. (2023) iskew_hxz4_21d Idiosyncratic skewness from the q-factor model Short-Term Reversal JKP

Jensen et al. (2023) ivol_capm_21d Idiosyncratic volatility from the CAPM (21 days) Low Risk JKP

Jensen et al. (2023) ivol_hxz4_21d Idiosyncratic volatility from the q-factor model Low Risk JKP

Jensen et al. (2023) niq_at_chg1 Change in quarterly return on assets Profit Growth JKP

Jensen et al. (2023) niq_be_chg1 Change in quarterly return on equity Profit Growth JKP

Jensen et al. (2023) op_at Operating profits-to-book assets Quality JKP

Jensen et al. (2023) ope_bel1 Operating profits-to-lagged book equity Profitability JKP

Jensen et al. (2023) saleq_gr1 Sales growth (1 quarter) Investment JKP

Jiang et al. (2005) age Firm age Low Leverage JKP

Kelly and Jiang (2014) BetaTailRisk Tail risk beta Size CZ

La Porta (1996) fgr5yrLag Long-term EPS forecast Investment CZ

Lakonishok et al. (1994) fcf_me Free cash flow-to-price Value JKP

Lakonishok et al. (1994) sale_gr1 Sales Growth (1 year) Investment JKP

Lakonishok et al. (1994) sale_gr3 Sales Growth (3 years) Investment JKP

Lakonishok et al. (1994) CF Cash flow to market Value CZ

Lakonishok et al. (1994) MeanRankRevGrowth Revenue Growth Rank Value CZ

Lamont et al. (2001) kz_index Kaplan-Zingales index Seasonality JKP

Landsman et al. (2011) RDS Real dirty surplus Investment CZ

Lev and Nissim (2004) pi_nix Taxable income-to-book income Seasonality JKP

Lev and Nissim (2004) Tax Taxable income to income Investment CZ

Li (2011) rd5_at R&D capital-to-book assets Low Leverage JKP

Litzenberger and Ramaswamy (1979) div12m_me Dividend yield Value JKP

Liu (2006) zero_trades_126d Number of zero trades with turnover as tiebreaker (6 months) Low Risk JKP

Liu (2006) zero_trades_21d Number of zero trades with turnover as tiebreaker (1 month) Low Risk JKP

Liu (2006) zero_trades_252d Number of zero trades with turnover as tiebreaker (12 months) Low Risk JKP

Liu (2006) zerotradeAlt1 Days with zero trades Low Risk CZ

Liu (2006) zerotradeAlt12 Days with zero trades Low Risk CZ
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Reference Factor Description Cluster Universe

Lockwood and Prombutr (2010) ChEQ Growth in book equity Investment CZ

Loh and Warachka (2012) EarningsStreak Earnings surprise streak Quality CZ

Loh and Warachka (2012) NumEarnIncrease Earnings streak length Profitability CZ

Lou (2014) GrAdExp Growth in advertising expenses Investment CZ

Loughran and Wellman (2011) ebitda_mev Ebitda-to-market enterprise value Value JKP

Loughran and Wellman (2011) EntMult Enterprise Multiple Value CZ

Lyandres et al. (2008) debt_gr3 Growth in book debt (3 years) Debt Issuance JKP

Lyandres et al. (2008) ppeinv_gr1a Change PPE and Inventory Investment JKP

Lyandres et al. (2008) CompositeDebtIssuance Composite debt issuance Value CZ

Lyandres et al. (2008) InvestPPEInv change in ppe and inv/assets Investment CZ

Menzly and Ozbas (2010) iomom_cust Customers momentum Investment CZ

Menzly and Ozbas (2010) iomom_supp Suppliers momentum Quality CZ

Miller and Scholes (1982) prc Price per share Size JKP

Nguyen and Swanson (2009) Frontier Efficient frontier index Value CZ

Novy-Marx (2013) gp_at Gross profits-to-assets Quality JKP

Novy-Marx (2011) opex_at Operating leverage Quality JKP

Novy-Marx (2012) ret_12_7 Price momentum t-12 to t-7 Profit Growth JKP

Novy-Marx (2013) GP gross profits / total assets Quality CZ

Novy-Marx (2012) IntMom Intermediate Momentum Profit Growth CZ

Ortiz-Molina and Phillips (2014) aliq_at Liquidity of book assets Investment JKP

Ortiz-Molina and Phillips (2014) aliq_mat Liquidity of market assets Low Leverage JKP

Palazzo (2012) cash_at Cash-to-assets Low Leverage JKP

Pástor and Stambaugh (2003) BetaLiquidityPS Pastor-Stambaugh liquidity beta Accruals CZ

Penman et al. (2007) bev_mev Book-to-market enterprise value Value JKP

Penman et al. (2007) netdebt_me Net debt-to-price Low Leverage JKP

Penman et al. (2007) BPEBM Leverage component of BM Low Risk CZ

Penman et al. (2007) EBM Enterprise component of BM Value CZ
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Reference Factor Description Cluster Universe

Penman et al. (2007) NetDebtPrice Net debt to price Low Leverage CZ

Piotroski (2000) f_score Pitroski F-score Profitability JKP

Piotroski (2000) PS Piotroski F-score Profitability CZ

Pontiff and Woodgate (2008) chcsho_12m Net stock issues Value JKP

Pontiff and Woodgate (2008) ShareIss1Y Share issuance (1 year) Value CZ

Prakash and Sinha (2013) DelDRC Deferred Revenue Low Leverage CZ

Rajgopal et al. (2003) OrderBacklog Order backlog Value CZ

Richardson et al. (2005) be_gr1a Change in common equity Investment JKP

Richardson et al. (2005) coa_gr1a Change in current operating assets Investment JKP

Richardson et al. (2005) col_gr1a Change in current operating liabilities Investment JKP

Richardson et al. (2005) cowc_gr1a Change in current operating working capital Accruals JKP

Richardson et al. (2005) fnl_gr1a Change in financial liabilities Debt Issuance JKP

Richardson et al. (2005) lti_gr1a Change in long-term investments Seasonality JKP

Richardson et al. (2005) ncoa_gr1a Change in noncurrent operating assets Investment JKP

Richardson et al. (2005) ncol_gr1a Change in noncurrent operating liabilities Debt Issuance JKP

Richardson et al. (2005) nfna_gr1a Change in net financial assets Debt Issuance JKP

Richardson et al. (2005) nncoa_gr1a Change in net noncurrent operating assets Investment JKP

Richardson et al. (2005) sti_gr1a Change in short-term investments Seasonality JKP

Richardson et al. (2005) taccruals_at Total accruals Accruals JKP

Richardson et al. (2005) DelCOA Change in current operating assets Investment CZ

Richardson et al. (2005) DelCOL Change in current operating liabilities Investment CZ

Richardson et al. (2005) DelEqu Change in equity to assets Investment CZ

Richardson et al. (2005) DelFINL Change in financial liabilities Investment CZ

Richardson et al. (2005) DelLTI Change in long-term investment Investment CZ

Richardson et al. (2005) DelNetFin Change in net financial assets Value CZ

Richardson et al. (2005) TotalAccruals Total accruals Investment CZ

Ritter (1991) AgeIPO IPO and age Value CZ
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Reference Factor Description Cluster Universe

Rosenberg et al. (1985) be_me Book-to-market equity Value JKP

Sloan (1996) oaccruals_at Operating accruals Accruals JKP

Sloan (1996) Accruals Accruals Quality CZ

Soliman (2008) ebit_bev Return on net operating assets Profitability JKP

Soliman (2008) ebit_sale Profit margin Profitability JKP

Soliman (2008) sale_bev Assets turnover Quality JKP

Soliman (2008) ChAssetTurnover Change in Asset Turnover Value CZ

Soliman (2008) ChNNCOA Change in Net Noncurrent Op Assets Value CZ

Soliman (2008) ChNWC Change in Net Working Capital Low Risk CZ

Stambaugh and Yuan (2017) mispricing_mgmt Mispricing factor: Management Investment JKP

Stambaugh and Yuan (2017) mispricing_perf Mispricing factor: Performance Quality JKP

Stattman (1980) BM Book to market (original definition) Value CZ

Thomas and Zhang (2002) inv_gr1a Inventory change Investment JKP

Thomas and Zhang (2011) tax_gr1a Tax expense surprise Profit Growth JKP

Thomas and Zhang (2002) ChInv Inventory Growth Investment CZ

Thomas and Zhang (2011) ChTax Change in Taxes Quality CZ

Titman et al. (2004) capex_abn Abnormal corporate investment Debt Issuance JKP

Titman et al. (2004) Investment Investment to revenue Investment CZ

Tuzel (2010) realestate Real estate holdings Low Leverage CZ

Xie (2001) capx_gr1 CAPEX growth (1 year) Investment JKP

Xie (2001) AbnormalAccruals Abnormal Accruals Value CZ
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C Empirical results

This appendix evaluates the robustness of the main empirical findings along four complementary

dimensions: (i) the choice of the realized volatility estimator, (ii) the length of the estimation

window L ∈ {756, 1008, 1260}, corresponding to 3, 4 and 5 trading years, (iii) the forecasting

horizon h ∈ {1, 5, 22} and (iv) the scoring rule (QLIKE and RMSE). Across all configurations,

the model rankings established in the main text persist. Changes in the volatility estimator

mainly shift the level of the loss but not the ordering, while varying L has a negligible effect and

conclusions are consistent under both loss functions. Overall, the robustness checks indicate that

adaptive multi-factor modeling delivers stable gains in statistical accuracy and economic value

across horizons and measurement choices.

Across all panels in Figure 10, the ordering of models is stable. The class of proposed models

dominates, with the three-factor specification closest to the origin (lowest QLIKE). Traditional

benchmarks (HAR, HARQ, SHAR) and simple factor models (HAR-MKT, MFV-CRV, MFV-

PC1) lie farther from the center. The relative distances between models are large compared with

the differences induced by the choice of L, indicating that the estimation window length plays a

second-order role for ranking. Absolute QLIKE levels vary across estimators, as expected, but

the model ordering is invariant.

The formal comparisons in Table 7 corroborate these graphical patterns. Measured by

annualized utility, our model specification outperforms the benchmarks for the vast majority of

stocks across estimators (Panel A), and these gains are frequently statistically significant at the

5% level (Panel B). The outperformance rates typically exceed 90%. Panel C shows that

improvements are economically sizable: in almost every combination of estimator and

benchmark, the utility difference exceeds 1 bp per year for more than 99% of stocks.

Table 8 shows that these conclusions are not specific to the QLIKE loss metric. Under

RMSE, the multi-factor models continue to deliver the lowest errors across quartiles and horizons.

Relative to the baseline HAR, mean RMSE falls by about 8.6% for h = 1 (0.5654 vs. 0.5166),

9.8% for h = 5 (0.6827 vs. 0.6159), and 7.7% for h = 22 (0.7712 vs. 0.7116). The reductions

are mirrored at the median and the quartiles. Performance improves monotonically with the

number of selected factors, and our specifications remain uniformly ahead of the alternatives.

Overall, the evidence indicates that the ranking of models is robust to the volatility estimator,

the estimation window, and the scoring rule.
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Figure 10: Radar plots of cross-sectional average QLIKE losses by volatility estimator (panels) and forecasting model
(vertices). Lower values are closer to the origin. Different colors correspond to estimation window lengths L ∈
756, 1008, 1260, as indicated in the legend. Within each panel the radial axis is scaled to that estimator. The multi-
factor models dominate across all realized specification and estimation windows. Differences across L are small relative to
model gaps, indicating that the ranking is less sensitive to the estimation window length.
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Table 7: Utility-based outperformance of the HAR-1F model against benchmark models, by realized volatility estimator.
Panel A reports Out.perf.,(% of stocks for which the HAR-1F model attains higher annualized utility); Panel B reports
Sig.Out.perf.,(% with the improvement significant at the 5% level via a Diebold-Mariano test); Panel C reports Diff ≥ 1
bp (% with a utility gain of at least 1 basis point per year). Each entry shows the baseline percentage, with the updated
specification in parentheses.

Benchmarks

Volatility estimators HAR HARQ SHAR HAR-MKT MFV-CRV MFV-PC1

Panel A: Out.perf. (%)

RV5 98.9 (1.1) 92.3 (7.7) 95.8 (4.2) 98.2 (1.8) 90.4 (9.6) 82.4 (17.6)
RV5ss 98.6 (1.4) 98.1 (1.9) 98.4 (1.6) 98.7 (1.3) 88.8 (11.2) 98.2 (1.8)
RV1 98.8 (1.2) 98.6 (1.4) 96.3 (3.7) 97.7 (2.3) 90.9 (9.1) 81.6 (18.4)
BPV 98.9 (1.1) 99.1 (0.9) 96.4 (3.6) 98.8 (1.2) 91.2 (8.8) 98.7 (1.3)
BPVstag 99.0 (1.0) 99.0 (1.0) 96.3 (3.7) 98.9 (1.1) 89.0 (11.0) 98.8 (1.2)
RK 99.2 (0.8) 99.3 (0.7) 96.4 (3.6) 99.0 (1.0) 94.9 (5.1) 86.2 (13.8)
TRV 99.0 (1.0) 99.0 (1.0) 98.6 (1.4) 99.4 (0.6) 88.7 (11.3) 98.8 (1.2)
PRV 99.2 (0.8) 98.8 (1.2) 94.9 (5.1) 99.2 (0.8) 94.3 (5.7) 99.0 (1.0)
PBV 99.2 (0.8) 98.6 (1.4) 94.7 (5.3) 99.3 (0.7) 93.9 (6.1) 98.9 (1.1)
NPDV 99.3 (0.7) 99.2 (0.8) 99.2 (0.8) 95.6 (4.4) 89.4 (10.6) 99.2 (0.8)
DV 96.6 (0.5) 95.5 (0.6) 84.6 (1.5) 89.5 (0.5) 56.4 (0.9) 96.0 (1.0)
WV 96.8 (0.9) 88.8 (1.2) 75.2 (3.1) 90.9 (0.9) 78.9 (1.1) 53.1 (2.3)

Panel B: Sig.Out.perf. (%)

RV5 98.2 (0.0) 97.0 (0.1) 97.9 (0.3) 95.1 (0.0) 84.9 (0.9) 77.0 (0.9)
RV5ss 97.8 (0.0) 97.8 (0.1) 97.7 (0.3) 95.7 (0.0) 83.0 (0.9) 92.6 (0.9)
RV1 97.7 (0.0) 97.6 (0.1) 97.0 (0.3) 96.7 (0.0) 87.4 (1.0) 79.0 (0.9)
BPV 98.1 (0.0) 98.2 (0.1) 97.3 (0.3) 95.3 (0.0) 85.8 (0.9) 93.3 (0.9)
BPVstag 98.0 (0.0) 98.2 (0.1) 97.1 (0.3) 95.5 (0.0) 84.8 (0.9) 93.0 (0.9)
RK 97.9 (0.0) 98.0 (0.1) 97.3 (0.3) 95.1 (0.0) 87.1 (0.9) 78.2 (0.9)
TRV 97.6 (0.0) 97.6 (0.1) 96.9 (0.3) 96.2 (0.0) 86.7 (0.9) 92.0 (0.9)
PRV 97.9 (0.0) 97.4 (0.1) 96.0 (0.3) 93.7 (0.0) 85.3 (0.9) 94.0 (0.9)
PBV 97.6 (0.0) 97.0 (0.1) 95.1 (0.3) 93.3 (0.0) 85.1 (0.9) 93.7 (0.9)
NPDV 99.1 (0.0) 99.0 (0.1) 98.4 (0.3) 96.6 (0.0) 93.3 (0.9) 96.8 (0.9)
DV 98.5 (0.0) 98.0 (0.0) 97.0 (0.3) 96.9 (0.0) 87.9 (0.9) 93.2 (0.9)
WV 99.2 (0.1) 98.3 (0.1) 96.7 (0.3) 97.7 (0.0) 93.1 (0.9) 85.1 (0.9)

Panel C: Diff ≥ 1 bp (%)

RV5 99.3 (0.6) 99.9 (1.0) 99.8 (2.0) 99.8 (0.5) 99.9 (0.8) 99.9 (1.4)
RV5ss 99.2 (0.6) 99.9 (1.0) 99.8 (2.0) 99.6 (0.5) 99.1 (0.8) 99.5 (1.4)
RV1 99.2 (0.6) 99.8 (1.0) 99.8 (2.0) 99.8 (0.5) 99.4 (0.8) 99.7 (1.4)
BPV 99.5 (0.6) 99.8 (1.0) 99.4 (2.0) 99.5 (0.5) 99.4 (0.8) 99.2 (1.4)
BPVstag 99.4 (0.6) 99.8 (1.0) 99.5 (2.0) 99.7 (0.5) 99.6 (0.8) 99.4 (1.4)
RK 99.2 (0.6) 99.2 (1.0) 99.2 (2.0) 99.3 (0.5) 99.3 (0.8) 99.4 (1.4)
TRV 99.8 (0.6) 99.8 (1.0) 99.8 (2.0) 99.8 (0.5) 99.8 (0.8) 99.7 (1.4)
PRV 99.2 (0.6) 99.2 (1.0) 99.3 (2.0) 99.3 (0.5) 99.4 (0.8) 98.9 (1.4)
PBV 99.3 (0.6) 99.0 (1.0) 99.3 (2.0) 99.4 (0.5) 99.4 (0.8) 99.1 (1.4)
NPDV 99.7 (0.6) 99.6 (1.0) 99.5 (2.0) 99.6 (0.5) 99.8 (0.8) 99.5 (1.4)
DV 99.8 (0.6) 99.8 (1.0) 99.8 (2.0) 99.8 (0.5) 99.6 (0.8) 99.5 (1.4)
WV 99.3 (0.6) 98.3 (1.0) 99.3 (2.0) 99.6 (0.5) 99.6 (0.8) 99.6 (1.4)
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Table 8: Cross-sectional RMSE of volatility forecasts by model and horizon. Entries are the 25th percentile (Q1), mean,
median, and 75th percentile (Q3) across 1041 stocks. Within each row, the lowest value is in bold.

Forecasting models

HAR SHAR HARQ HAR-
MKT

MFV-
CRV

MFV-
PC1

HAR-1F HAR-2F HAR-3F

Panel A: h = 1

Q1 0.2868 0.2945 0.2825 0.3024 0.2709 0.2629 0.2589 0.2538 0.2521
Median 0.4210 0.4158 0.4107 0.4318 0.3898 0.3811 0.3769 0.3722 0.3705

Mean 0.5654 0.5624 0.5564 0.5795 0.5396 0.5311 0.5243 0.5188 0.5166
Q3 0.6218 0.6172 0.6143 0.6407 0.5793 0.5719 0.5709 0.5642 0.5659

Panel B: h = 5

Q1 0.3736 0.3759 0.3723 0.3758 0.3577 0.3556 0.3414 0.3313 0.3224
Median 0.5111 0.5104 0.5057 0.5153 0.4854 0.4793 0.4717 0.4578 0.4472

Mean 0.6827 0.6801 0.6777 0.6821 0.6615 0.6578 0.6394 0.6262 0.6159
Q3 0.7546 0.7505 0.7507 0.7525 0.7202 0.7136 0.6968 0.6822 0.6658

Panel C: h = 22

Q1 0.4362 0.4362 0.4365 0.4338 0.4349 0.4344 0.4209 0.4088 0.3937
Median 0.5849 0.5833 0.5848 0.5820 0.5816 0.5783 0.5700 0.5538 0.5340

Mean 0.7712 0.7703 0.7707 0.7695 0.7709 0.7699 0.7496 0.7322 0.7116
Q3 0.8596 0.8577 0.8597 0.8541 0.8549 0.8543 0.8329 0.8124 0.7887
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