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Abstract

This paper examines the predictive role of high-frequency factor volatilities in modeling the
volatility of individual stocks. We develop a dynamic forecasting framework that selects the
most informative factor-specific realized volatility from a large cross-section of asset pricing
anomalies. Embedded in a log-linear specification, the model integrates both market-wide
and idiosyncratic components, allowing for a flexible representation of volatility dynamics.
We prove the strong consistency of our selection procedure, and show that our selection
rule asymptotically identifies the factor that truly drives volatility. We further show how
measurement errors affect the adaptive selection. Empirical results based on a broad universe
of U.S. equities demonstrate that the proposed method significantly outperforms standard
benchmarks, both statistically and economically. The findings underscore the importance
of incorporating high-frequency cross-sectional information in volatility modeling, offering a

scalable and interpretable approach to understanding time-varying risks in equity markets.
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1 Introduction

Volatility plays a fundamental role in finance as it underlies the risk-reward dynamics defining
modern financial theories, from investment decision-making to monetary policies. Despite its
centrality, the modeling of volatility remains largely uninformed about the multivariate
frameworks that dominate empirical asset pricing. From the first factor model of Sharpe (1964)
to the “zoo” of factors in Harvey et al. (2016), the literature on financial returns has long
embraced systematic, cross-sectional structures; in contrast, volatility has mainly been modeled
as an idiosyncratic, asset-specific process. As Bollerslev (2022) notes, volatility modeling has
been slow to internalize the inherently multivariate nature of market dynamics, often ignoring
the factor structures that drive both return co-movements and correlated risk exposures. The
result is a methodological gap: whereas expected returns are modeled via linear exposures to
observable or latent factors, volatility is typically forecasted without acknowledging systematic
drivers.

Any volatility modeling framework ultimately hinges on how precisely variance can be
measured. FEarly contributions such as the ARCH model of Engle (1982) and its generalized
version by Bollerslev (1986) introduced conditional heteroskedasticity as a time-varying
property of return series. Parallel to these, the stochastic volatility models by Taylor (1982)
offered a latent process formulation. The introduction of high-frequency financial data marked
a fundamental shift, enabling, under ideal sampling conditions, nonparametric estimation of
risk with realized volatility (RV) measures. However, the discrete and discontinuous nature of
financial markets poses challenges for the unbiased and consistent estimation of realized
volatility: multi-scale estimators (Zhang et al., 2005, Nolte and Voev, 2012) and pre-averaging
methods (Christensen et al., 2014) address market microstructure noise; bipower and
multipower estimators (Barndorff-Nielsen and Shephard, 2004), truncated estimators (Mancini,
2009) and some combinations thereof (Corsi et al., 2010) focus on jumps; recent contributions
(Andersen et al., 2023, Li et al., 2025) provide robust estimation in presence of short-lived
extreme price movements. These advancements have made it possible to recover the latent
volatility process efficiently, providing a reliable instrument for volatility forecasting models.

One of the most influential frameworks to leverage realized volatility is the Heterogeneous
Autoregressive model of Corsi (2009). The HAR model parsimoniously captures the
long-memory behavior of volatility by including lagged daily, weekly, and monthly realized
volatilities as regressors, approximating the effect of a broader lag distribution in a simple
linear specification. Volatility forecasting has further improved with extensions such as the
semivariance HAR (SHAR) model of Patton and Sheppard (2015), allowing for conditional
asymmetries through signed returns, or the HARQ of Bollerslev et al. (2016), introducing

realized quarticity to account for temporal variations in RV measurement errors. Despite these



refinements, a foundational limitation remains: HAR models are inherently univariate, thus
agnostic to any systematic risk factors.

The limitations of univariate volatility models have motivated a shift towards specifications
incorporating cross-sectional information. A prominent example is the market-HAR model
introduced by Hizmeri et al. (2022), which augments the standard framework with market-level
realized (co)variances and semi(co)variances. Building on similar reasoning, the multiplicative
volatility factor (MVF) model proposed by Ding et al. (2025) presents a parsimonious structure
in which the realized variance of each stock is expressed as the product of a latent common
volatility factor and an idiosyncratic residual. Empirically, both models demonstrate significant
gains in forecast accuracy, confirming a stylized fact: stock volatilities co-move over time, often
driven by aggregated shocks rather than isolated firm-level events. This insight is
well-grounded in the empirical literature. Early studies by Engle et al. (1988) and Calvet et al.
(2006) document volatility spillovers across markets and asset classes. Complementing this,
Herskovic et al. (2016) identify a latent common idiosyncratic volatility factor that explains a
significant fraction of cross-sectional volatility dispersion. More recent works emphasize the role
of firm-level linkages: Herskovic et al. (2020) show that firms embedded in central positions
within economic networks exhibit stronger volatility co-movement. At the macro level,
Bollerslev et al. (2018) and Engle and Campos-Martins (2023) provide evidence of global
volatility factors driving fluctuations in equity markets, reinforcing the importance of modeling
volatility beyond the firm-specific scale.

The observed heterogeneity in volatility patterns extends beyond a single driver. Figure 1
displays the annualized realized volatility of the high-frequency market (MKT) factor against
the other four Fama and French (2015) factors, namely size (SMB), value (HML), profitability
(RMW), and investment (CMA). Every time series exhibits distinct and persistent dynamics
over time, suggesting that volatility may originate from multiple, structurally distinct sources.
Recent works by Barigozzi and Hallin (2017) and Kapadia et al. (2024) provide robust evidence
that multiple volatility shocks arise from diverse economic sources such as styles, industries, and
risk premia structures. In this context, the identification of the most informative factor variance
must be flexible and dynamic, thereby motivating adaptive multi-factor frameworks that update
their forecasting structure in response to shifting volatility regimes.

The present paper introduces a novel volatility model that extends the HAR structure by
dynamically selecting the most informative components among a large cross-section of
high-frequency asset pricing factors. Specifically, we construct daily realized variances based on
second-level intraday returns for 287 observable anomalies, covering the full set proposed in
Fama and French (2018), Chen and Zimmermann (2022) and Jensen et al. (2023).
Methodologically, this approach contributes to the literature on high-dimensional forecasting by

imposing structural sparsity through selection rather than shrinkage. Unlike LASSO-type
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Figure 1: Annualized 5-minute realized volatility of Fama-French five factors (MKT, SMB, HML, RMW, CMA) from 2014
to 2023. The figure illustrates the heterogeneous dynamics of factor volatilities.

estimators (Chinco et al., 2019, Gu et al., 2020) or composite forecast models (Freyberger
et al., 2020), which often yield opaque functional relationships or unstable inclusion patterns,
our model remains interpretable, tractable, and grounded in economic theory. Moreover, it
complements recent advances in volatility decomposition (Barigozzi and Hallin, 2020, Luciani
and Veredas, 2015), network-based risk propagation (Zheng and Li, 2011), and regime-sensitive
factor modeling (Asai et al., 2015, Atak and Kapetanios, 2013).

We evaluate forecasting performance across more than one thousand U.S. equities,
markedly exceeding the cross-sectional coverage of typical studies in the volatility forecasting
literature. The proposed model is benchmarked against several prominent volatility forecasting
frameworks, delivering statistically significant improvements in forecast accuracy. Assets
inherit volatility from common drivers: shocks to factor-level uncertainty propagate to
individual variance through time-varying exposures, so realized factor volatility at multiple
horizons add information beyond an asset’s own history. The robustness of these gains is
confirmed across multiple realized volatility estimators, forecasting horizons, and loss functions.
These results establish the necessity of incorporating factor-specific volatility components in
forecasting models, and show that informational efficiency depends not only on the precision of
realized-variance measurement but also on the structural selection of its predictors.

The remainder of the paper is structured as follows. Section 2 outlines the econometric
framework, model specification, and theoretical foundations of the log-HAR framework with
adaptive factor volatilities. We prove the strong consistency of our selection procedure, where

we show the quasi-likelihood (QLIKE)-based selection rule asymptotically identifies the factor



that truly drives volatility. We also characterize how the mis-selection probability responds to
measurement error. Section 3 describes the dataset construction and implementation details.

Section 4 presents the forecasting results and factor analysis. Section 5 concludes.

2 Theoretical framework

2.1 Setup and background theory

Throughout the paper, we work on a filtered probability space (£2, F, (F;)i>0, P) with a complete
and right-continuous filtration. For each asset i = 1,..., N, the log-price process (P;¢)¢>0 is

defined on this space, adapted to (F;), and is an It6 semimartingale of the form
dP; ¢ = i dt + o0 AW 3 t>0, (1)

where the drift p;; and instantaneous volatility o;; are (F;)-progressively measurable processes
such that, for every T' < oo, fOT |pi|dt < oo a.s. and fOT Jztdt < oo a.s., and W;; is a standard
(F¢)-Brownian motion.

Writing the trading day ¢ > 1 as the unit-length interval (¢ — 1,t], we define the latent

integrated variance for asset ¢ on day t as

t
IV ::/ aisds. (2)
t—1

The integrated variance aggregates the entire intraday volatility path, and is the quantity we
ultimately seek to forecast at daily and longer horizons. To maintain conciseness in the
exposition, we abstract from discontinuous price moves here; jumps and other extreme price
movements are incorporated through robust estimators in the empirical analysis presented in
Section 4.

Although the integrated variance I'V;; is not observable, it is well known that high-frequency
returns yield a consistent nonparametric estimator. Specifically, let A = 1/M be the intraday
sampling interval and index observations by j = 1,..., M. On the equally spaced intraday grid,
the j-th intraday returnis 7, j = P 1—14jAo—F; 14 (j—1)a- Under the continuous semimartingale

assumption and in the absence of market microstructure noise, the realized variance

M M
2
RV = g 13 = g (Pit—11ja — Piy—1+(-1)a) (3)
j=1 j=1

converges in probability to IV;; as the mesh A — 0 (ie. M — 00); the analogous joint
convergence holds in multivariate sense for the realized covariance matrix, and hence for any

fixed linear portfolio. If there was a jump component in (1), then (3) would converge in



probability to the quadratic variation, which incorporates the jump variations in addition to
the integrated variance. See Theorems 4.47 and 4.52 of Jacod and Shiryaev (2003) for details.
The limiting distribution of the realized variance has been widely investigated in the literature
under diverse conditions, see Ait-Sahalia and Jacod (2014) for a comprehensive exposition.

We construct asset pricing factors from the same universe of stocks as the individual assets.
Let 71+ denote the daily log return on an asset pricing factor k£ € K, with K denoting the finite
index set corresponding to the set of candidate factors (e.g., MKT, SMB, HML).! Writing Tkt
for the j-th intraday log return of factor k& computed on the equally spaced grid {t — 1+ A, ¢ —
1+2A,...,t} with mesh A = 1/M, we estimate the factor volatility nonparametrically by the

realized variance

M
FRVpy == > 1h4; (4)
j=1

the realized factor variance. By continuous mapping, the consistency and limiting distribution
results extend to the realized variance of the factor return, provided the sampling is free of
microstructure noise and the factor is implemented as a self-financing, tradable linear portfolio
with weights that are F;_;-measurable and of bounded variation on (¢ — 1, ¢].

The asset- and factor-level realized variances defined above constitute the observable building

blocks for the theoretical framework developed in the next subsections.

2.2 Adaptive Factor-Driven Volatility Models

We propose a volatility forecasting framework that augments the heterogeneous autoregressive
(HAR) structure with multiplicative factor components. To ensure the non-negativity of the
variance, to alleviate right-skewness and heavy tails, and to render the multiplicative
decomposition additive, we adopt a log-linear specification and work with log RV, i.e., the log
realized variance of stock ¢ on day ¢.

We model log RV;; as the linear combination of three log predictor blocks. First, the market

proxy, which is defined as the cross-sectional average of realized variances across all stocks
1 N
CRV, = + Z} RV, (5)
1=

hereafter referred to as common realized variance (CRV). Second, the stock-specific component

RV;
&t = !

- o (6)

defined as the multiplicative residual of stock i’s variance relative to the cross-section. Third,

LAll factors examined are diversified in the sense of Ross (2013), so the associated portfolios bear negligible
firm-specific risk. This feature distinguishes our analysis from Herskovic et al. (2016) and related studies that
focus on commonality in the volatility of firm-specific returns.



the factor specific component F Rka,t’ which is the realized factor variance (4) corresponding to
the high-frequency factor k7, € K, where ki*,t is chosen adaptively as the factor whose realized
variance lags yield the best in-sample explanatory power for stock i.> See (8) below and the
discussion that follows.

Each component adds to the model daily, weekly, and monthly lags. Specifically, for each
stock 7, day ¢ and forecasting horizon h, the log-realized variance log RV; ;. follows the linear

model
log RV, h = log CRV," + %) 1og CRV ™) + 857\, 1og CRV,™
og RV; 441 = Bo +ﬂc}zv og ¢+ Bory log v+ Bopy log t

+ B log 51@ + B(w) log 51-(1:) + ﬂ(m) log 51.(;”)
+ 89 log FRV + B“) log FRV + B log FRV(* ™ ¥ eien

(7)

log Cth(d) log ¢ log PRV,
= o+ By |logCRV™ | +B8{ |logel™ | +B[. 1ogFRV,§*) it
log CRV,™ log €7 log FRVk(m)
—_—— ———
Market/Common block Stock block Factor block
where the coefﬁcients B = (B ﬁ 5(m) ), Be = (5(60 5(w) 5(m)) and
CRV CRV> CRV’ CRV/>» ¢ £ e e
B ( k* ; k* ; ,(CT)) are estimated by the OLS over a rolling estimation window of fixed
length L.  The superscripts (d), (w), (m) refer to the daily (:L‘gd) = 1), weekly
(mgw) = %Zizo xth)y and monthly (xgm) = 53 ZT 0 Tt— T) averages, respectively, for

Tt = CRW, fit, or FRka .
For a selection window of length .S, the high-frequency factor to be chosen by k7, is the
one delivering the best in-sample quasi-likelihood (QLIKE) performance. That is, we choose the

factor that minimizes the QLIKE loss

¢ —k
1 RV, RV,
¥y = argmin § — Z log 2+ =21 g, (8)

—k
where RV, is the measured realized variance and RV is the forecasted (with candidate
- —k
factor k) realized variance of stock i on day s of the selection period.® The forecasts RV,  are
calculated using the estimated coeflicients of the proposed model, which includes the factor

block, daily, weekly, and monthly lags of log F'RVj: , alongside the CRV and & blocks.

?Equation (4) defines F RV} as the realized variance of factor k at date t. When the selected factor index is
k7, (chosen for stock i at date t), the corresponding series is FRVk;W ¢+. To avoid reporting the same time index,
we henceforth write F' RV;C;J

3As a robustness check, we also implement the selection rule using the RMSE loss metric. The resulting
forecasts (reported in Appendix C) are qualitatively similar, indicating that our adaptive factor choice is not
sensitive to the specific loss function employed.



Remark. The estimation window L and the selection window S serve different purposes. The
former is used to estimate the coefficients in (7) while the latter is used to score candidate
factors in (8). In our specification, we impose S < L so that the S evaluation observations lie
within the L-day estimation sample, ensuring that the QLIKE criterion is computed in-sample

at t under common (fixed) parameter estimates.

The final specification (7) preserves the interpretability of the standard HAR structure while
expanding its information set to include an extensive set of high-frequency, economically
grounded realized factor variances. By combining a log-linear specification with adaptive factor
selection, the model remains tractable and scalable for large cross-sections yet flexible enough
to capture multi-factor volatility dynamics, effectively unifying autoregressive persistence with
a multiplicative factor structure.

To motivate the model structure, we document persistence in the key variance components.
As established by Ding et al. (2025) and Herskovic et al. (2016), both the cross-sectional
realized variance (CRV) and the multiplicative residual component exhibit substantial
long-memory characteristics, reflecting persistent temporal dependencies in asset-specific and
market-level volatility dynamics. We extend this analysis to the realized factor variances (FRV)
used in our framework. We investigate whether a similar degree of persistence characterizes the
realized variances of the high-frequency asset pricing factors included in our forecasting
framework.

For each factor in our dataset, we compute the first-order autocorrelation of daily realized
variances. Figure 2 presents the empirical distribution of these autocorrelations, while Table 1
reports its summary statistics. Consistent with the hypothesis of long-memory behavior, we find
that factor-level realized variances are highly persistent, with a median autocorrelation of 0.815
and an interquartile range spanning from 0.776 to 0.846. These findings corroborate the presence
of a strong autoregressive structure in factor volatilities, and support the inclusion of FFRV as a
dynamic predictor in volatility forecasting models.

The single-factor framework naturally generalizes to the two or three most informative factor
variances for each stock. Given the candidate set I, let K, = {ki*,t,b LD k;,t,K*} cK
denote the ordered set of factors selected for stock i at date ¢, where K* = card(K7},) € {2,3} is
the number of selected factors. The elements are ordered by in-sample QLIKE loss with lowest
first so that k7, ; is the top-ranked factor.

In this multi-factor framework, the forecasting equation (7) becomes

log RVisin = fo+ Y (55’5 log CRV,” + 8 log el + Y 87 1og FRV,j?) + Eigrn.
ze{d,w,m} kElC;t
(9)



Table 1: Summary statistics of first-order autocorrelation for factor-level realized variances. The reported values are the
25% quantile (Q1), the median, and the 75% quantile (Q3) of the autocorrelation across the factors under construction.

Q1 Median Q3
corr(FRVy, FRV,_4) 0.776 0.815 0.846
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Figure 2: Median persistence of factor realized variances. The left panel plots the daily first-order autocorrelation with

its interquartile range (25-75%), while the right panel shows the median autocorrelation function across all high-frequency
factors. The red dashed line marks the 5% critical value.

We restrict K* to {2,3} in order to balance explanatory power, estimation stability, and
interpretability; because realized factor variances share considerable information, performance
saturates with only a few top factors. The selection routine proceeds iteratively, searching for
the next volatility predictor that adds the most explanatory power. First, we scan the full
universe of candidate series and retain the factor k:ztj1 that delivers the lowest in-sample
QLIKE (or RMSE) loss over the rolling selection window S. Holding k', ; fixed, we re-estimate
the model after adding each remaining candidate one at a time and select the factor k;m that
achieves the largest additional loss reduction; this completes the specification with K* = 2. If a
third predictor is allowed, we repeat the exercise once more: evaluate every unused candidate
conditional on {ki*,t,l’ki*,tz}a and retain k7, 5, i.e., the factor that yields the largest additional
loss reduction. Thus, each additional factor variance is chosen strictly for the marginal
improvement it brings.

Forecasts for time ¢ + h are formed at the close of day t using CRV;, &4, and F RV},
k € K}, together with their weekly and monthly aggregates. All quantities are Fi-measurable,

so the procedure uses only information available by date ¢t and does not use those beyond t¢.

2.3 Model Validity I: Adaptive Selection

We now establish the theoretical foundations of the log-HAR framework with adaptive factor
volatilities introduced in Subsections 2.1 and 2.2. We prove in Theorem 1 that the QLIKE-based
selector consistently identifies the true predictive factor, verifying the asymptotic correctness

of the selection rule. We also show how the selection reliability is affected by the variance of



measurement error proxied by realized quarticity in Theorem 2. The results motivate and support
the validity of our use of robust realized-variance estimators and the factor-volatility block.

We suppose the true data generating process (DGP) for the log integrated variance is

log(IVit) = Bo + B<HY 1og(CIVy) + B log(&]) ) + > i - log(FIViy) + i, (10)
ke

where CIV; := N=13° 1V, 4, f{}t/ = 1V;/CIV;, and

t
FIVy, ::/ 0',378d8 (11)
t—1

where ai, s is the instantaneous variance of the factor’s return at time s and 7y, is the loading
on log(F1Vy,), nonzero only for the unique active factor on the window, see Assumption A
below. The observed quantities log(CRV;), log(&; ;) and log(F' RV}, ;) are proxies for these latent
terms. If factor k is a tradable linear portfolio with predictable weights wy s on constituents
with instantaneous covariance Yy, then 0,%73 = wmeswk’S and FIVp; = f;l w;ﬁsstk,S ds.
This justifies the interpretation of F'RV}; as a high-frequency proxy for the latent quantity in

the data generating process.

Notations and Preliminaries. We introduce some notations we shall use throughout. Fix
a stock i, a forecast origin ¢, and a forecasting horizon h, and recall that K is the index set
for the candidate factors. In our empirical application K = 287, where K = card(K) < oo.
For a candidate factor k£ € K, we define the parameter vector of the corresponding model as
0 = (Bo,Bcrv,Pe Br) € O and the vector of predictors available at time s as XZ-’fS =
(log(CRV;),log(&s), log(FRVy ), augmented with their weekly and monthly aggregates. We
denote by m(XF_;

2,87

0) the log-linear predictor for stock 4 including factor k, so that

log R‘/i,s—‘rh = m(Xk 9) + Eis+h; s € {t - 57 coyt— 1}3 (12)

2,87

cf. (7). Let the level target and its implied forecast be, respectively, V; s := RV; ¢4, > 0 and
VE(0) = exp{ m(Xi]fs; 0)} > 0. We refer to the single-observation QLIKE loss using

vk (0) V;
U Vig, XE:0) =1 0, 1
(V iys ) og< Vs >+st(9) (13)

which is well-defined since V; ¢ > 0 and ‘st (#) > 0, and write the sample loss

~

-1

s:t_f(V”’X’ks’ 0). (14)

ztke

CQ\H

10



Finally, let

£Lﬂk):::Qgng[f(Wﬁ,XfQG)’]Q,J

denote the minimized (conditional) population loss for factor k € K.

We impose the following regularity conditions:
Assumption A.

A1l. For each stock i and time t, there is a single true active factor, kzt, which remains
unchanged over {t — S,...,t — 1}.  That is, the set of true non-zero coefficients

Sit = {k € K;ykt # 0} has only one element so that card(S;;) = 1.

AZ2. gx s uniformly bounded away from zero by some positive constant C

inf . |>C>o. 15
Swng%M_ (15)

A3. Let Z; s = (1,log(CRVy),log(&i ). Let ugr . and uy s be the residuals from the population
regressions of log(F'RVy: ) and log(F RV ) on Zi,s; respectively. Then, for some k € [0, 1),

max corr(ug* , U < k<l 16
ker\{k; i} ( Kis Iw) (16)

A4 (i) {(Vis, Xf,s)} is strictly stationary and a-mizing with a(€) = O(€~°) for some ¢ > 2; (ii)
for each k € K, O is compact and 0 — Z(Vi,s,X-k 0) is measurable and continuous a.s.;

1,87

(ii1) there exists an envelope M; s with \E(W,S,Xk 0)] < M; s and E[M; 5] < c0.

7,87

Remark. Assumption Al imposes a unique, locally stable volatility driver within the selection
window, which is the minimal identification content needed for a single-factor selector.
Assumption A2 is a standard signal-strength condition ensuring that the contribution of the
true factor does not vanish on the window. Assumption A3 is a restricted non-collinearity
requirement: after partialling out the common block Z;, = (1,log(CRV;),log(&:s)), the
innovation in the true factor cannot be replicated by any inactive factor; this rules out
near-collinearity of the factor-specific signals once the common predictors are controlled for.
Under the log-DGP in (10) and the QLIKE loss £(-), it follows that A2 and A3 jointly imply

strict separation of the population risks: there exists Api, > 0 such that
Li (k) — ﬁi,t(k/‘;t) > Apin forall ke K\ {k::t} (17)

Assumption A4 provides a uniform law of large numbers over k € K and 6 € O

11



stationarity /mixing, compact parameter spaces, and an integrable envelope imply

max sup ’Li,t(k; 9) —E [E(V;,sa szsa 0)] ‘ & Oa (18)
kex 0cOy ’
so the sample criteria deviate uniformly little from their population counterparts, see Andrews
(1987), Davidson (1994). Consequently, with K fixed and finite, the sample argmin equals the
population argmin with probability tending to one, which is the main content of Theorem 1

below.

The strong consistency of our selection procedure is now formally presented. The theorem
proves that our QLIKE-based selection rule asymptotically identifies the factor that truly drives
volatility. With sufficiently long windows, the probability that the procedure picks the true factor

converges to one, as desired.

Theorem 1. Let IC be the finite set of candidate factors. Suppose 7{:\2*,5 is chosen at time t for
stock i according to the minimum QLIKE loss criterion for the model with factor k. That is, for

each k € K and 6 € O, define

t—1
1 A .
Li(k;0) = g S:zt:sf(vivs, st, 0) and 0y € arg grggi Li(k;0), (19)
and let
kr, € argmin L; 4(k; 6y). (20)
ke

If Assumptions A1l — A4 hold, then the selection procedure identifies the true active factor with
probability tending to one, i.e., as S — oo with S = o(T),

Pkt = ki) = 1, (21)
where ki*’t denotes the unique active factor of (10) in the window.

Proof. See Appendiz A. O

2.4 Model Validity II: Adaptive Selection under Measurement Error

We now examine how measurement error in the factor-volatility block affects the adaptive
selection in Subsection 2.3. In our empirical implementation, realized factor variance F'RV} ; is
a noisy proxy for the latent factor integrated variance FIV};, and the magnitude of this noise
is time varying and captured by realized quarticity (F'RQ). Theorem 2 below shows that
measurement error shrinks the population loss gap that drives the selection: the higher the

(conditional) variance of the measurement error for the true factor, the lower the probability

12



that the QLIKE-based selector picks it. This provides a formal rationale for using robust
high-frequency estimators and for including the factor-volatility block.

We impose the following conditions:
Assumption B. B1. For each factor k € K and each s,
10g<FRVk7S) = log(FIkas) =+ €k,s5

with Eleg s | Fs—1] = 0, Var(egs | Fs—1) = 0,378, and Elley s|**°] < oo for some § > 0.
Moreover, ey, s is conditionally uncorrelated with Zi,s = (1,log(CRV;),log(&is)) and with
log(FIVk/’s) fOT K 7é k.

B2. There exist positive constants 0 < c— < cqp < 0o such that

C_FIQus < opy < 4 FIQy,,

where FIQ)y, s is the factor integrated quarticity, for which F RQ)y, s is consistent in the sense
that supy, | FRQp. s/ FI1Qy, s — 1| = 0p(1) uniformly in k.

B3. Let 5’,%;t = 5! ZZ;LS a,%;s. There exists 63 > 0 such that 5’%% < &2, and 52 can be

made arbitrarily small.

Bj. For each k € K, the population risk R;i(k,0) = E[{(Vis, XE,,0)] is twice continuously

,87

differentiable in the linear predictor m(XffS;O) in a neighborhood of the optimum, with a

uniform lower curvature bound: there exists co > 0 such that for all k,

Riy(k,0) — inf Ry, (k,9) > cOE[(m(X.k :0) — m(XF -9;;))2},
[ISISTA

1,87 2,87
where 0} € arg mingee, R;(k,0) under latent inputs.

Remark. The assumptions are mild and specify a weak set of conditions under which the
theory is valid. Assumption Bl specifies an errors-in-variable structure, and B2 ties the
conditional variance of the error to quarticity. Assumption B3 bounds the window-average

noise variance and B4 gives strong convexity of the population QLIKE risk in the log predictor.

We have the following result:

Theorem 2. Under Assumptions A1-A4 and B1-B/, for

1
=2 2 ) — ) . .
ks, = E o and H;(S) := max eselg)k}Lm(k, 0) — R%t(k,@)},
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there exist a constant independent of S, denoted C1 > 0, such that the following holds: for any
incorrect k # ki,

R1,(K) ~ RY(K) > Duin — C1 3% + 0@, (22)

where Awin is as in (17) and R],(-) denotes the population risk evaluated with the noisy factor

wputs. In addition, we have
P(kiy = ki) = P(Hia(S) < 3[Amin—Cr0h]). (23)

In particular, if 6,3*t < Amin/C1, then th(k‘) > R],(k7,) for all k # K}, and as S — oo with
S =o(T), we have

Proof. See Appendix A. O

3 Data

We assemble a comprehensive high-frequency dataset of U.S. equities to support the estimation
of realized variance under infill asymptotics. The sample contains all CRSP common shares
(share codes 10 or 11) listed on the NYSE, NASDAQ or AMEX (main exchange codes 1, 2 or
3) from January 2, 2014 to December 29, 2023, covering T' = 2516 trading days and N = 5370
unique securities.

Intraday trades and quotes are sourced from the NYSE TAQ database via WRDS and
restricted to regular trading hours (09:30-16:00 Eastern Time).* Following standard practice,
we apply the filters of Barndorff-Nielsen et al. (2009) to remove observations outside regular
hours, zero or negative prices, obvious quote errors, and extreme outliers. Additional
safeguards remove FINRA Alternative Display Facility prints (exchange “D”) and delete trades
priced beyond the daily CRSP ask-high or bid-low. Prices are then sampled on a uniform
one-second grid between 09:30:00 and 16:00:00 ET using the previous-tick method of Gengay
et al. (2001). The resulting high-frequency returns can naturally be aggregated to any lower
frequency, allowing a straightforward implementation for any realized variance estimator.

Daily opens, closes, shares outstanding, and delisting returns are obtained from CRSP. We
match TAQ symbols to CRSP identifiers (PERMNOs) via the TAQ-CRSP Link table (covering
about 98% of the universe).” We prioritize CRSP entries: each CRSP record is retained even

if no intraday data exist that day, while unmatched TAQ observations are ignored.® To ensure

4We use the SAS code from Holden and Jacobsen (2014) to extract tick-by-tick transactions matched with
contemporaneous bid—ask quotes from daily TAQ. Timestamps are recorded in milliseconds until mid-2015 and
microseconds thereafter.

®Residual cases are matched by eight-digit CUSIP from the TAQ Master file.

SUnmatched observations involve fewer than 1% of stocks, almost all nano-caps, so they have little effect on
weighted portfolio returns.
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Figure 3: Cumulative gross daily returns of the Fama—French six factors using official data and our high-frequency
replication. The orange line corresponds to daily returns sourced from the Kenneth R. French Data Library, while the
blue dashed line represents our version constructed from 1-second returns aggregated to daily frequency.

consistency around corporate events, we overwrite the 09:30 and 16:00 TAQ prices with the
CRSP open and close, and we adjust the closing return when delisting returns occur, in line with

Hou et al. (2018).

3.1 High-frequency factors

Leveraging intraday stock information, we replicate a universe of K = 287 high-frequency
factors. The first block contains the six canonical Market (MKT), Size (SMB), Value (HML),
Profitability (RMW), Investment (CMA), and Momentum (UMD) factors, replicated to closely
match the definitions in Fama and French (2018). The second block spans 281
characteristic-sorted portfolios drawn from the large collections of Jensen et al. (2023) (JKP)
and Chen and Zimmermann (2022) (CZ).”

To replicate the Fama—French factors at high frequency, we follow the standard definitions
with NYSE breakpoints, double-sorting on size and annual rebalancing in June. Adapting the
procedure of Afit-Sahalia et al. (2020), we update value-weighted stock returns at 1-second
frequency, and compute portfolio returns. Figure 3 shows that our daily aggregation of the
replicated factors is virtually indistinguishable from the official data.

The remaining portfolios are constructed from a large cross-section of firm characteristics.® At

"As the Fama-French factors are widely used as benchmarks, we replicate them as faithfully as possible. By
contrast, the broader zoo of factors is built under a uniform methodology to ensure comparability across signals.

8To avoid duplication where JKP and CZ provide conceptually similar characteristics, we retain the JKP
implementation whenever the two series are empirically equivalent (return correlation > 95%) and drop signals
with missing data, yielding 153 JKP and 128 CZ unique factors.
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Figure 4: Histogram of R? from factor-level monthly return regressions. For each JKP (left) and selected CZ (right) factor,
we regress our aggregated high-frequency portfolio returns on the original low-frequency portfolio over 2014-2023. Results
are reported by economic cluster using the Jensen et al. (2023) taxonomy: CZ factors are mapped to clusters by the highest
average correlation between their CAPM-residual returns and those of the JKP factors within each cluster. Higher R2
indicates closer replication fidelity.

the end of each month, eligible stocks are sorted into terciles by the given characteristic. Following
the empirical design in Jensen et al. (2023), we compute value-weighted returns for the top and
bottom terciles and form a zero-investment high-minus-low spread held over the subsequent
month. To validate our procedure, we compare our replication against the original low-frequency
versions by examining the explanatory power of monthly return regressions. Figure 4 summarizes
the comparison across JKP and CZ factors, demonstrating high fidelity for the whole replication.

A compendium of the sample factors and more details on the dataset are reported in Appendix
B. To ensure comparability with the literature and computational tractability, we compute C RV,
and related quantities using the full-universe definitions as in Ding et al. (2025). As the factors
and CRV; are constructed from the same stock universe as the dependent variable, stock ¢
mechanically enters both CRV; and the factor realized variance (F' RV}, ;) used to forecast RV; 144,
This own-observation inclusion has negligible impact on forecasts: the leave-one-out measure
CRVt(ﬂ.) =(N-1)"! > ji RV differs from CRV; by at most O(1/N), and the factor portfolios

are well diversified. Accordingly, we treat the effect as negligible.

4 Empirical evidence

The primary interest of the empirical analysis is the out-of-sample forecasting performance of
the proposed model. The results of our framework are tested using twelve alternative realized
volatility estimators, selected to encompass a broad spectrum of methodological approaches and
robustness features. These include the classical realized variance (RV) of Andersen and Bollerslev

(1998) at 5-minute and 1-minute frequency, and its 5-minute subsampled version. We consider the
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bipower variation (BPV) introduced by Barndorff-Nielsen and Shephard (2004) and its staggered
definition (Andersen et al., 2007), the realized kernel developed by Barndorff-Nielsen et al. (2008),
the truncated realized variance (TRV) of Mancini (2009) and the pre-averaged measures (PRV,
PBV) of Christensen et al. (2014). We also include more recent contributions like the differenced-
return variance (DV) of Andersen et al. (2023) and the nonparametric price duration variance
(NPDV) proposed by Hong et al. (2023).

While all results are evaluated across the complete set of estimators to ensure robustness,
we adopt the candlestick variance (or wick variance, WV) by Li et al. (2025) as the benchmark
throughout the analysis due to its desirable properties. Specifically, the WV estimator provides
resilience against microstructure noise and accommodates jumps and extreme price movements,
remaining unbiased and robust under a wide range of market conditions. These features make
it especially well-suited for high-frequency volatility estimation and motivate its primary role in
our results.

Our forecasts are constructed using a recursive estimation approach. For each stock ¢ and
day t, we estimate the coefficients of the model in 9 by ordinary least squares over a rolling
window of length L = 1260. We generate h-day-ahead forecasts for the log-realized variance,
longrh, using the estimated parameters and the daily, weekly, and monthly lags of the
model explanatory components: the market-wide realized variance (CRV;), the corresponding
idiosyncratic component (&), and the log realized variance of the factors (FRVj; ) chosen for
the best performance over the selection window S = 252.

We assess forecasts across three different forecasting horizons h € {1, 5,22}, corresponding to
predictions for one trading day, week and month ahead. Forecast accuracy is assessed using the
quasi-likelihood (QLIKE) loss function, defined by Patton (2011) and formulated by Bollerslev
et al. (2016) as

QLIKE' = Z 1 RVZ RV‘; 1 (25)
= o RV’ RV} ’

where RV ; and RV; denote the forecasted and realized variances of stock ¢ at horizon ¢, and @

is the number of out-of-sample observations.

4.1 Forecasting performance

We evaluate the forecast accuracy over the sample of N = 1041 CRSP stocks having less than
20% zero 5-minute returns between 2014 and 2023, with an evaluation period of Q = 1213
trading days. Realized variance is measured using the candlestick estimator of Li et al. (2025).
Our factor-augmented specifications in (9) are denoted by HAR-1F, HAR-2F, and HAR-3F,
corresponding respectively to K* = 1,2,3. We compare their forecasting performance against

widely adopted benchmarks, namely the standard HAR by Corsi (2009), the quarticity-adjusted
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Table 2: Cross-sectional QLIKE loss distributions of different forecasting models and horizons, using the candlestick variance
estimator of Li et al. (2025). Entries report the 25th percentile (Q1), mean, median (50th), and 75th percentile across
N = 1041 stocks over an evaluation period of Q = 1213 trading days. In every row, bold entries indicate the lowest value.

Forecasting models

HAR SHAR HARQ HAR-MKT MFV-CRV MFV-PC1 HAR-1F HAR-2F HAR-3F

Panel A: h=1

Q1 0.1406 0.1414 0.1372 0.1415 0.1359 0.1340 0.1293 0.1288 0.1288
Median 0.1701 0.1738 0.1668 0.1728 0.1650 0.1632 0.1570 0.1559 0.1565
Mean 0.1816 0.1867 0.1779 0.1844 0.1767 0.1738 0.1674 0.1666 0.1665
Q3 0.2142 0.2218 0.2102 0.2175 0.2077 0.2041 0.1961 0.1946 0.1949

Panel B: h=25

Q1 0.2335 0.2427 0.2328 0.2344 0.2286 0.2228 0.2003 0.1950 0.1904
Median  0.2740 0.2827 0.2719 0.2747 0.2630 0.2563 0.2325 0.2246 0.2202
Mean  0.2900 0.2987 0.2865 0.2897 0.2768 0.2715 0.2455 0.2373 0.2313
Q3 0.3270 0.3363 0.3230 0.3269 0.3074 0.2990 0.2746 0.2656 0.2573

Panel C: h =22

Q1 0.4920 0.4988 0.4927 0.4877 0.4841 0.4860 0.3434 0.3096 0.2654
Median 0.5941 0.5967 0.5928 0.5834 0.5841 0.5797 0.3972 0.3527 0.3039
Mean 0.6179 0.6218 0.6165 0.6105 0.6065 0.6079 0.4133 0.3644 0.3145
Q3 0.7061 0.7163 0.7033 0.6997 0.6948 0.6993 0.4627 0.4094 0.3498
h=1
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Figure 5: Distribution of QLIKE losses across models and forecast windows. Each boxplot summarizes the QLIKE values
across all stocks using the WV estimator (Li et al., 2025). The models include traditional benchmarks (HAR, HARQ,
SHAR), the market-HAR, the MFV model with common RV and PC1, the proposed one-factor model and its multi-factor
extensions. Boxes represent the 25th, 50th, and 75th percentiles, while whiskers extend to the 1st and 99th percentiles.

HARQ of Bollerslev et al. (2016) and the asymmetric SHAR (Patton and Sheppard, 2015). We
also include the market augmented HAR of Hizmeri et al. (2022) and the multiplicative volatility
by Ding et al. (2025) with common RV (MFV-CRV) and first principal component (MFV-PC1).

In Table 2, the models we propose attain the lowest QLIKE across every quantile of the
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cross-section. The performance strengthens with the number of selected factors and with the
length of the forecasting horizon, with the three-factor model lowering the average loss metric
by up to 48% relative to the best alternative. Figure 5 complements these results by displaying
the full distributions. The factor specifications exhibit a clear downward shift and tighter
interquartile ranges relative to all benchmarks, with compressed upper tails that indicate
robustness to outliers. The improvements are monotone, confirming that the inclusion of
multiple volatility drivers yield lower and more stable forecasting loss. Our findings remain
qualitatively unchanged across all alternative estimators considered”.

We next evaluate the model performance at the individual stock level and assess the statistical
relevance of the observed forecast improvements. Specifically, we compare the QLIKE loss of
the HAR-1F model against that of each benchmark across the stock universe'!’. We quantify the

fraction of stocks for which our factor model yields a lower QLIKE as the raw outperformance

N
1 A .

Out.perf. = — > 1{QLIKEjp_1r < QLIKE},,}, (26)

i=1
where QLIKE}{AR_IF and QLIKEgm denote the QLIKE losses of stock 7 for the proposed
model and the benchmark model, respectively. To further examine the statistical significance of
the forecast differentials, we implement the Diebold and Mariano (2002) test for each stock. We
evaluate the null hypothesis of equal predictive accuracy using a one-sided test on the difference

11

between the QLIKE values of the proposed and benchmark models."" Finally, we report the

proportion of stocks for which our model delivers statistically significant forecast improvements
1 N

Sig.Out.perf. = N Z; 1{pi <a}, (27)
1=

where p; is the p-value of the DM test for stock ¢, and o = 5% is the significance threshold.
Table 3 reports the proportion of cases for which our factor augmented model statistically
outperforms each benchmark. The significative outperformances show pervasive gains for our
one-factor specification relative to the traditional benchmarks across any volatility estimator and
forecasting horizon. For the weekly horizon, more than 95% of stocks exhibit significantly lower
QLIKE using the HAR-1F rather than the traditional HAR model or its univariate variants.
At the monthly horizon, the improvement increases to more than 99% in every case. At the

daily horizon significance remains high but less pronounced, with differences depending on the

9 Appendix C verifies robustness to the choice of realized-volatility estimator, forecasting horizon h € {1, 5,22},
and scoring rule.

Figure 5 indicates that the multi-factor specifications (HAR-2F, HAR-3F) achieve further reductions in
QLIKE relative to HAR-1F and the benchmarks: the one-factor outputs therefore provide a conservative result.

"The null and alternative hypotheses are Hp : E(QLIKEuar-1rt — QLIKEpy, ) > 0 against Hi :
E(QLIKEmar-1Frt — QLIK Epp ) < 0. The test statistic is computed as &/&(J), where d = Zqul dq/Q is the
average loss differential dq = QLIKFEyar—1r,q — QLIK Epm g, and 6(q) is its heteroskedasticity-autocorrelation
consistent (HAC) standard error.
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Table 3: Significative outperformance proportion of the one-factor model (HAR-1F) over the benchmark models across
forecasting horizons and volatility estimators between 2014 and 2023. Entries report the percentages of stocks for which
the QLIKE loss of the HAR-1F model is significantly lower than the benchmark performance at the 5% significance level
of the Diebold-Mariano test.

Volatility estimators

Benchmarks RV5 RVbss RV1  BPV BPVg,,RK TRV PRV PBV NPDV DV WV

Panel A: h=1
HAR 94.7 940 92.8 958 955 97.1 96.0 96.3 964 956 96.6 96.8
HARQ 64.2 879 919 960 959 970 952 92,5 92.0 94.8 955 88.8
SHAR 784 93.7 841 798 822 780 905 73.0 712 960 84.6 752

HAR-MKT 837 844 854 830 872 893 913 8.0 906 646 89.5 909
MFV-CRV 64.1 596 623 655 615 769 576 756 73.6 57.8 564 789
MFV-PC1 45.0 920 41.8 953 954 562 952 963 969 949 96.0 53.1

Panel B: h=25
HAR 98.2 97.8 97.7 981 980 979 976 979 976 99.1 985 99.2
HARQ 97.0 978 976 982 982 980 976 974 97.0 99.0 98.0 98.3
SHAR 979 97.7 970 973 971 973 969 96.0 951 984 97.0 96.7

HAR-MKT 951 957 967 953 955 951 962 937 933 966 969 97.7
MFV-CRV 849 830 874 8.8 848 871 86.7 8.3 8.1 933 879 931
MFV-PC1 7.0 926 79.0 933 930 782 920 94.0 93.7 96.8 93.2 85.1

Panel C: h =22

HAR 99.1 99.2 992 995 994 99.2 998 99.2 993 99.7 998 99.3
HARQ 99.1 992 992 995 995 992 998 99.2 992 99.6 998 99.3
SHAR 99.1 992 992 994 995 99.2 998 993 993 995 998 99.3

HAR-MKT 993 992 995 995 99.7 993 998 993 994 996 99.8 99.6
MFV-CRV 99.2 994 994 994 99.6 993 998 994 994 99.8 996 99.6
MFV-PC1 994 990 995 992 994 994 99.7 989 991 995 995 99.6

selected estimator. The pattern is stable across noise and jump robust measures, which indicates
that the results are not driven by the choice of the realized specification. Overall, our model’s
superior statistical performance is robust across different estimators, benchmarks, and forecasting
horizons: these results underscore the added value of flexible factor selection in capturing time-

varying heterogeneity in volatility sources.

4.2 Return and volatility factor selections

We examine whether, within a broad factor universe with K = 287 characteristics, the same
cross-sectional signal tends to drive both expected returns and realized variances for a given
stock and day. For each (i,t), we compare the factor selected by an adaptive return model to
the volatility driver selected by our volatility framework. The return selector is a one-factor
specification with a cross-sectional component and a single characteristic factor return, chosen
to minimize the sum of squared errors over the most recent S = 252 observations within a rolling

window of length L = 1260. The volatility selector is the proposed HAR-1F model.
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Figure 6: Time series of cluster shares implied by the adaptive selectors. Left: share of stocks whose return model selects
a factor from each cluster. Right: corresponding shares for the HAR-1F volatility model using the candlestick estimator of
Li et al. (2025). Stacked areas sum to 100% per day over a period of length @ = 1213 trading days.

We map each factor to one of thirteen economic clusters using the taxonomy of Jensen, Kelly
and Pedersen (2023). JKP portfolios inherit their original labels, while CZ portfolios are assigned
to clusters by the highest average correlation between their CAPM-residual returns and those
of the JKP factors within each cluster. Figure 6 displays, for each trading day, the distribution
across clusters of the factor selected by the return model (left) and by the HAR-1F volatility
model (right), expressed as the share of stocks selecting a factor from each cluster; the stacked
areas sum to 100% per day.

To quantify alignment at the stock—day level, let kﬁt denote the factor chosen by the return
selector and kl‘/; the factor chosen by the volatility selector, and let ¢(k) € {1, ..., 13} map factors

to clusters. Define the daily proportions

N N
pgactor — %Z ]l{ kﬁt — k}ﬁ and pgluster _ %Z ]l{ c(kﬁt) = C(k}ﬁ) } .
i=1 =1

Across the sample, the median of pgaCtor is below 1%, and the median of pfluSter is below 10%,
indicating that exact factor matches and even same-cluster matches are rare in the cross-section
on any given day. Consequently, similarities between the left and right panels of Figure 6 reflect
aggregate shifts in cluster composition across stocks, not synchronized selections for the same
stocks. These findings are consistent across forecasting horizons. When the volatility factor is
selected for weekly and monthly forecasts, the chosen clusters concentrate on a smaller subset,
with the strongest concentration during high-volatility regimes. Results are qualitatively robust

to alternative volatility estimators and to loss functions beyond QLIKE.

21



Table 4: Economic-value comparison between the HAR-1F model and the benchmarks across daily to monthly forecasting
horizons, using the WV estimator of Li et al. (2025). For each benchmark, entries report the cross-sectional percentage
of stocks for which HAR-1F delivers higher annualized utility than the benchmark (Out.perf.), the percentage for which
the improvement is statistically significant at the 5% level using a two-sided Diebold—Mariano test (Sig.Out.perf.), and the
percentage for which the utility difference exceeds 1 basis point per year (Diff > 1 bp). Values in parentheses give the
corresponding percentages in which the benchmark outperforms the HAR-1F model under the same criterion.

Benchmarks Out.perf. (%) Sig.Out.perf. (%) Diff > 1 bp (%)

Panel A: h=1

HAR 99.3(0.7) 96.8 (0.0) 98.4(0.5)
HARQ 97.5(2.5) 88.8(0.5) 94.1(1.5)
SHAR 91.9(8.1) 75.2(0.8) 88.0(3.6)
HAR-MKT 99.2 (0.8) 90.9 (0.0) 94.4(0.5)
MFV-CRV 93.9(6.1) 78.9(0.2) 82.7(0.4)
MFV-PC1 85.0 (15.0) 53.1(2.3) 68.8 (1.7)

Panel B: h=5

HAR 99.9 (0.1) 99.2 (0.1) 99.8 (0.1)
HARQ 99.9(0.1) 98.3(0.1) 99.8(0.1)
SHAR 99.3(0.7) 96.7 (0.1) 99.3(0.2)
HAR-MKT 99.9(0.1) 97.7(0.1) 99.6 (0.1)
MFV-CRV 98.9(1.1) 93.1(0.2) 98.0(0.5)
MFV-PC1 95.9 (4.1) 85.1(1.2) 94.6 (2.3)
Panel C: h =22
HAR 99.9(0.1) 99.3(0.0) 99.8 (0.1)
HARQ 99.9(0.1) 99.3(0.0) 99.8 (0.1)
SHAR 99.8 (0.2) 99.3(0.0) 99.8 (0.2)
HAR-MKT 99.9 (0.1) 99.6 (0.0) 99.8 (0.2)
MFV-CRV 100.0 (0.0) 99.6 (0.0) 99.9 (0.0)
MFV-PC1 100.0 (0.0) 99.6 (0.0) 99.9 (0.0)

4.3 Economic significance

Beyond statistical accuracy, an important question is whether improvements in volatility
forecasting translate into economically meaningful gains. To address this, we adopt the
utility-based evaluation framework introduced by Bollerslev et al. (2018), which links variance
forecasts to the performance of volatility-managed investment strategies. Holding stock i, the

investor’s utility expressed in annualized percentage terms is

where Rti and Rti denote, respectively, the realized variance on day g and its forecasted value.
The first term captures the expected return component, inversely scaled by conditional volatility,
while the second term penalizes variance under a mean-variance investor framework with a risk

aversion level implied by a 4% volatility penalty.
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Table 4 summarizes the economic performance of our factor-switching model relative to the
considered benchmarks across all forecasting horizons. For each comparison, we report three
measures: (i) the percentage of stocks for which the factor model yields higher utility than
the benchmark (Out.perf.), (ii) the percentage of stocks for which the utility improvement is
statistically significant at the 5% level based on a DM test (Sig.Out.perf.), and (iii) the percentage
of stocks for which the utility difference exceeds 1 basis point annually, a threshold used to capture
economically significant improvements.

The results demonstrate that the predictive gains of our model translate into substantial
economic value. Across all benchmark comparisons and forecast horizons, the factor-switching
model consistently improves investor utility for the large majority of stocks, with improvements
that are both statistically significant and economically meaningful. These findings reinforce the
practical value of incorporating adaptive factor selection in the modeling of stock volatility, and

remind that more accurate volatility forecasts yield tangible benefits in portfolio outcomes.

5 Conclusion

This paper introduces a novel volatility forecasting framework that integrates high-frequency
factor information with a dynamic selection mechanism to improve the prediction of individual
stock variances. By extending a multiplicative volatility model with heterogeneous
autoregressive lags and leveraging a broad cross-section of 287 factor volatilities, our approach
achieves substantial gains in forecast accuracy relative to standard benchmarks.

The key contribution lies in demonstrating that volatility is not uniformly driven by a fixed
set of risk sources but is instead shaped by time-varying, asset-specific exposures to distinct
factor volatilities. In this sense, our model attempts to contribute to the methodological gap
between volatility modeling and asset pricing.

Beyond the econometric gains, our results underscore the feasibility and informativeness
of replicating factor portfolios at ultra-high frequencies, opening a path toward more granular
assessments of systematic volatility. Future research could extend this framework to multivariate
volatility modeling and examine the implications for portfolio risk management and derivative

pricing.
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Appendix to
Volatility Forecasting Factors



A  Proof of main results

Proof of Theorem 1. Recall that, for any candidate factor k& € K, stock ¢ and time ¢, we write

the parameter vector for the corresponding model as 0 := (fo, Bcrv, Be, Br) € Ok, and

t—1

1
Lis(ki0) = 5 D (Vi XL, 6). (1)

s=t—S

The estimated parameter vector, /H\k, is the M-estimator that minimizes this sample loss:

f), = arg min Li(k;0). (2)
0O,

~

Showing that P(kf, = k},) — 1 as S — oo, where &, is the index of the true active factor
is equivalent to showing that for any incorrect factor k # k7,, the probability of the event
{Lie(KFy; é\’%*,t) < Li,t(k;ak)} converges to 1.

We will prove that the difference L; ;(k; é\k) — Lo (kfy; é\k;t) is strictly positive with probability
approaching one.

Given L;;(k) = infpco, E[K(W’S,st,ﬁ)], the minimized population loss for model k, by
Assumptions Al-A3 there exists a unique population minimizer at the true factor k7,. Hence,
there exists a fixed gap Ay = L; (k) _Ei,t(k;,t) > 0 for all k # k7. Let Apin = mink¢k;t Ay >0.

Now we have,

Li,t(k§ ak) - Li,t(kf,t? é\k:t)
= (Lip(k) — Lip(k7y)) + (Li’t(k; ) Li’t(k)) B (Li’t(k;’t; gk;’t) B Li’t(kzt))

> Amin + (Li,t(k; Or) — ﬁi,t(k)> - <Lz‘,t(ki*,t; gk;t) - ﬁi,t(ki*,t)>
> Aumin — |Lialki ) = Laa(0)| = [Luelki s Oo,) = Lialk?)
> Amin — 2 - max sup Li,t(k; 9) - Ez(%,saXiks: 0)‘ .

kek gco, ’

Lit(k;0) —EL(V; 5, XEF 9)‘ By Assumptions A4, the uniform

©,87

Let H;4(S) = maxgex SUPgeo,
law of large numbers applies, Andrews (1987), Davidson (1994), and this maximum deviation
converges in probability to zero:

Hi ()50 as S — oo (3)

)

Therefore, for any € > 0 and any ¢ > 0, there exists a window size Wy such that for all S > W,
we have P(H;(S) < 0) > 1 — € by definition.



Choose § = Apin/2. Then for S > Wy, with probability greater than 1 — €, we have:
Lig(k:Ok) = Lig(kr4: 00 ) > Aumin — 2+ Hig(S) > Amin — 2 (Amin/2) = 0. (4)

As a result, for any k # k},, the sample loss for model k is strictly greater than the sample loss
for the true model kzzt with probability approaching 1. Therefore, the minimizer of the sample

loss must be £,

P <argminLi’t(k;67k) = k‘:t> =1 as S — oo. (5)
kel

This completes the proof. O

Proof of Theorem 2. Write R?yt(k,e) for the population risk with latent factor inputs and
R!,(k,0) for the same risk with noisy inputs. Let

HZ;t € argemin Rgt(kzt, 0)

and

Gzz’t € arggmin R (K}, 0).

Define C?J(k‘) := infy Rgt(k,e) and Ezt(k) = infy R},(k,0). By Al-A3 there is a unique
minimizer at ki*,t in the latent case with gap Appn > 0.

Under Bl and B4, perturbing the factor regressor of the k7;-model by ek, changes the linear
predictor by Vhr €k, A second-order expansion of th(kzt, ) around Gz;’t and the curvature
bound in B4 yield

L0,(k5) — L2,k = Bl ] = coC?ah (1+0(1)), (6)
uniformly on the window, using the bound W’%-*,J > C > 0 from Assumption A2 and E[ezjs] =
szs from Assumption B1. |

YFor any k # k};, the j-model’s factor input does not contain er: under Assumptions B,
B4 and bounded moments, the perturbation of its best attainable risk is at most of order 5,%;15

due to cross-effects via ZLS, ie.,
|£7, (k) = £3, (k)] < Caaf (1+0(1)) (7)

for some constant Co > 0 independent of .S.



Combining the two steps,

EZt(k)_‘CZt( z*t) > (E?,t(k‘ —E?,t( ;t)) - (C'2+COC2)5,%;t + O(EI%;t), (8)

which is (22) with Cy := Cy + ¢oC?.

Let H;4(S) := maxpex supyeo, ‘Liyt(k‘;ﬂ) - th(k‘,e)‘. By Assumption A4, H;;(S) & 0 as
S — o0o. Therefore, with probability at least ]P)(HM(S) < %[Amin—clﬁ,%;t]), we have L; ¢ (k; é\k) >
Li (k745 é\kﬁt) for all k # kf,. Finally, B2 and B3 imply 6’%?,t is (up to constants) the window-
average of F'I Qk’f,s and can be proxied by the window-average of F RQk;S, yielding the rest of

the statement in Theorem 2. O

B Data

This appendix documents the datasets and summary properties used throughout the paper. We
report descriptive statistics for 1-second stock returns and their time-variation and report cross-
sectional quantiles of annualized realized volatility for both stocks and factors. We then show
how resampling creates aggregation bias for high-minus-low style portfolios and provide an exact
aggregation rule. The section concludes with the catalog of the high-frequency factors included

in the sample.

B.1 Descriptive statistics

This section provides descriptive statistics for the time series used in the empirical analysis.
Figure 7 summarizes cross-sectional features of 1-second stock returns. The distribution of
average returns is tightly concentrated near zero, with a slight positive median and mild right
skew, indicating negligible drift at the one-second horizon. Standard deviations cluster at a few
basis points and display a pronounced right tail, consistent with substantial heterogeneity in
intraday volatility across firms. The share of nonzero one-second returns is low for most stocks,
reflecting price discreteness and more sparse updates, but exhibits a wide upper tail associated
with more actively traded names.

Figure 8 tracks the daily evolution of the cross-section of one-second stock returns using the
5th, 25th, 50th, 75th, and 95th percentiles. The median remains essentially at zero throughout,
while dispersion fluctuates over time, widening sharply during market stress. The pattern
highlights time-variation in both scale and tail thickness, with negative skew in drawdowns.

Table 5 reports, by calendar year, cross-sectional quantiles of annualized daily realized
volatility for the stock universe and for the long—short factor portfolios. By construction, stocks
are substantially more volatile than factors: pre-2020 medians lie in the 16-20% range versus

3-5% for factors, and both panels exhibit a pronounced surge in 2020 (medians 29.7% for
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Figure 7: Stock returns at the one-second horizon: cross-sectional histograms of the average returns (in basis points),
their standard deviation (bps), and the percentage share of nonzero returns. For readability, the top and bottom 1%
of observations are trimmed. The solid vertical line marks the cross-sectional median and the shaded band spans the
interquartile range (25th to 75th percentiles).
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Figure 8: Stock returns at the one-second horizon: time series of cross-sectional percentiles (p05, p25, p50, p75, p95),
expressed in percent. Percentiles are computed at 1-second frequency across the stock universe.

Table 5: Cross-sectional distribution of annualized realized volatility across, respectively, sample stocks and factors. Values

are reported in percentage by year for median and 10", 25th  75th and 90th quantiles.
STOCKS FACTORS
P1o P25 Pso brs Poo P1o P25 Pso brs Poo

2014 9.64 12.21 16.26 22.49 31.10 2.44 2.84 3.44 4.30 5.56
2015 10.86 13.58 17.78 24.29 34.11 2.82 3.33 4.08 5.07 6.34
2016 10.69 13.67 18.52 26.22 37.52 2.79 3.37 4.28 5.63 7.37
2017 9.50 11.97 16.03 22.10 30.64 2.53 2.97 3.60 4.40 5.37
2018 11.93 14.99 20.03 27.56 37.25 3.25 3.93 4.97 6.63 8.92
2019 12.05 14.92 19.36 25.76 34.43 3.08 3.64 4.52 5.62 6.87
2020 16.28 21.32 29.69 44.12 67.40 4.66 6.04 8.26 11.58 15.77
2021 14.05 17.72 23.53 32.06 43.03 4.73 5.94 7.70 9.89 12.36
2022 17.05 21.07 27.22 35.91 46.23 5.71 7.07 9.20 12.18 15.60
2023 13.24 16.24 20.91 27.65 36.54 4.37 5.22 6.55 8.36 10.30

stocks and 8.3% for factors). The dispersion widens similarly, with the interquartile range
reaching about 23 percentage points for stocks and 5 percentage points for factors during the
pandemic, before narrowing in the subsequent years. The parallel movements underscore

common volatility conditions across underlying equities and factor portfolios.



B.2 Aggregation bias for HML-style factors

High-frequency factor returns are recorded at one-second resolution, yet many empirical tasks
(e.g., computing 5-minute realized variance or evaluating the factor replication over daily and
monthly horizons) require resampling to coarser grids. For high-minus-low (and
low-minus-high) style portfolios, compounding the factor return itself is mathematically
incorrect because cross-product terms appear when simple returns of different portfolios are
multiplied.

The problem is generic: it arises whenever a combination of portfolio returns is cumulated
from a fine grid to any lower frequency. Figure 9 illustrates the bias with the Fama—French six
factors. We obtain the daily and monthly versions of each factor from the Kenneth R. French
data library, cumulate the daily series up to monthly frequency, and compare the result with
the monthly returns available in the library. We also include the replicated 1-second returns
aggregated to the same horizon. The market factor lines up perfectly, whereas high-minus-low
style factors diverge.

The algebra is straightforward for a single portfolio. Let Ry = rg1 and Ry = 712 denote two

successive simple returns given t € {0, 1,2}; compounding yields

(1+R1)(1+R2) =1+Ri+Ry+RRy — Ria=R;i+ Rs+ R1Rs. (9)

Consider a high-minus-low factor formed each sub-period as RFML = R — RE. Cumulating

the factor returns after differencing at a higher frequency, we obtain

14+ REML — (1 + RE — REY(1 + RY — RY)

=1+ R{ML  REME 4 RUMLRIML _ (RURY + RIRY — 2RIRY). (10)

The additional terms —RIRZ —RFRI, and 2RFRL have no counterpart in the
single-portfolio identity (9). Each is second-order in intraday returns, yet their effect cumulates
with both sampling frequency and portfolios number, so aggregating a pre-differenced HML
series will generally diverge from the true low-frequency spread. To eliminate this distortion,
we compound the high- and low-leg portfolios independently and take their difference only at
the target horizon. This rule preserves exact aggregation from one-second data to any lower

frequency used in the analysis.
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Figure 9: Cumulative gross monthly returns for the Fama—-French six factors between 2014 and 2023. Green thick lines
are the benchmark series downloaded at monthly frequency from the Kenneth R. French data library, orange solid lines
compound the library’s daily returns to the monthly horizon and blue dashed lines aggregate the 1-second replication.
The market factor (MKT) aggregates exactly, while the five high-minus-low (or low-minus-high) spreads diverge, with the
discrepancy widening as the starting sampling interval shortens.



B.3 Sample factors

Table 6: Catalog of the asset-pricing anomalies replicated at high frequency for this study. Columns list the original study and mnemonic, a brief description of the signal, its economic theme,
and the data library sourced for replication. The table continues across pages.

Reference Factor Description Cluster Universe
Abarbanell and Bushee (1998) dgp dsale Change gross margin minus change sales Quality JKP
Abarbanell and Bushee (1998) dsale dinv Change sales minus change Inventory Profit Growth JKP
Abarbanell and Bushee (1998) dsale drec Change sales minus change receivables Profit Growth JKP
Abarbanell and Bushee (1998) dsale dsga Change sales minus change SG&A Profit Growth JKP
Abarbanell and Bushee (1998) sale_emp grl Labor force efficiency Profit Growth JKP
Abarbanell and Bushee (1998) ChInvIA Change in capital inv (ind adj) Low Leverage CZ
Abarbanell and Bushee (1998) GrSaleToGrInv Sales growth over inventory growth Quality CZ
Abarbanell and Bushee (1998) GrSaleToGrOverhead Sales growth over overhead growth Value CZ
Ali et al. (2003) ivol capm_252d Idiosyncratic volatility from the CAPM (252 days) Low Risk JKP
Alwathainani (2009) EarningsConsistency Earnings consistency Quality CzZ
Amihud (2002) ami_126d Amihud Measure Size JKP
Amihud and Mendelson (1986) BidAskSpread Bid-ask spread Low Leverage CZ
Anderson and Garcia-Feijoo (2006) capx_ gr2 CAPEX growth (2 years) Investment JKP
Anderson and Garcia-Feijoo (2006) capx_ gr3 CAPEX growth (3 years) Investment JKP
Anderson and Garcia-Feijoo (2006) greapx Change in capex (two years) Investment CZ
Anderson and Garcia-Feijoo (2006) grecapx3y Change in capex (three years) Investment CZ
Ang et al. (2006) ivol ff3 21d Idiosyncratic volatility from the Fama-French 3-factor model Low Risk JKP
Ang et al. (2006) rvol 21d Return volatility Low Risk JKP
Ang et al. (2006) betadown 252d Downside beta Low Risk JKP
Ang et al. (2006) CoskewACX Coskewness using daily returns Profitability CZ
Asness et al. (2019) qmj Quality minus Junk: Composite Quality JKP
Asness et al. (2019) qmj_growth Quality minus Junk: Growth Quality JKP
Asness et al. (2019) qmj prof Quality minus Junk: Profitability Quality JKP




Reference Factor Description Cluster Universe
Asness et al. (2019) qmj_safety Quality minus Junk: Safety Quality JKP
Asness et al. (2020) corr 1260d Market correlation Seasonality JKP
Asness et al. (2020) rmax5_rvol 21d Highest 5 days of return scaled by volatility Short-Term Reversal JKP
Baik and Ahn (2007) OrderBacklogChg Change in order backlog Profitability CzZ
Balakrishnan et al. (2010) niq_at Quarterly return on assets Quality JKP
Balakrishnan et al. (2010) roaq Return on assets (qtrly) Profitability CZ
Bali et al. (2017) rmax5_21d Highest 5 days of return Low Risk JKP
Bali et al. (2011) rmax1 21d Maximum daily return Low Risk JKP
Bali et al. (2016) iskew ff3 21d Idiosyncratic skewness from the Fama-French 3-factor model Short-Term Reversal JKP
Bali et al. (2016) rskew_ 21d Total skewness Short-Term Reversal JKP
Bali et al. (2016) ReturnSkew3F Idiosyncratic skewness (3F model) Short-Term Reversal CZ
Ball et al. (2016) cop_atll Cash-based operating profits-to-lagged book assets Quality JKP
Ball et al. (2016) op_atll Operating profits-to-lagged book assets Quality JKP
Ball et al. (2016) CBOperProf Cash-based operating profitability Profitability CZ
Ball et al. (2016) OperProfRD Operating profitability R&D adjusted Profitability CzZ
Banz (1981) market equity Market Equity Size JKP
Barbee Jr et al. (1996) sale _me Sales-to-market Value JKP
Barry and Brown (1984) FirmAge Firm age based on CRSP Low Risk CZ
Barth et al. (1999) ni_inc8q Number of consecutive quarters with earnings increases Quality JKP
Basu (1983) ni_me Earnings-to-price Value JKP
Basu (1977) EP Earnings-to-Price Ratio Value CZ
Belo and Lin (2012) inv_grl Inventory growth Investment JKP
Belo and Lin (2012) InvGrowth Inventory Growth Investment CzZ
Belo et al. (2014) emp grl Hiring rate Investment JKP
Belo et al. (2014) BrandInvest Brand capital investment Profitability CZ
Bhandari (1988) debt _me Debt-to-market Value JKP
Blitz et al. (2011) resff3_12 1 Residual momentum t-12 to t-1 Momentum JKP




Reference Factor Description Cluster Universe
Blitz et al. (2011) resff3_6_1 Residual momentum t-6 to t-1 Momentum JKP
Blitz et al. (2011) ResidualMomentum Momentum based on FF3 residuals Momentum Cz
Blume and Husic (1973) Price Price Size CZ
Bouchaud et al. (2019) ocf at Operating cash flow to assets Profitability JKP
Bouchaud et al. (2019) ocf at chgl Change in operating cash flow to assets Profit Growth JKP
Boudoukh et al. (2007) eqnpo_me Net payout yield Value JKP
Boudoukh et al. (2007) eqpo_me Payout yield Value JKP
Boudoukh et al. (2007) NetPayoutYield Net Payout Yield Value CZ
Boudoukh et al. (2007) PayoutYield Payout Yield Value CZ
Bradshaw et al. (2006) dbnetis_at Net debt issuance Seasonality JKP
Bradshaw et al. (2006) eqnetis_ at Net equity issuance Value JKP
Bradshaw et al. (2006) netis_ at Net total issuance Value JKP
Bradshaw et al. (2006) NetDebtFinance Net debt financing Debt Issuance CZ
Bradshaw et al. (2006) NetEquityFinance Net equity financing Low Risk CZ
Bradshaw et al. (2006) XFIN Net external financing Low Risk CZ
Brennan et al. (1998) dolvol 126d Dollar trading volume Size JKP
Ang et al. (2006) FEPS Analyst earnings per share Profitability CZ
Chan et al. (1996) AnnouncementReturn Farnings announcement return Momentum CZ
Chan et al. (1996) REV6 Earnings forecast revisions Momentum CZ
Chan et al. (2001) rd me R&D-to-market Size JKP
Chan et al. (2001) rd_sale R&D-to-sales Low Leverage JKP
Chan et al. (2001) AdExp Advertising Expense Value CZ
Chan et al. (2001) RD R&D over market cap Low Leverage CZ
Chandrashekar et al. (2009) CashProd Cash Productivity Quality CZ
Chen et al. (2002) DelBreadth Breadth of ownership Momentum CzZ
Chordia et al. (2001) VolSD Volume Variance Size CZ
Chordia et al. (2001) dolvol _var_126d Coefficient of variation for dollar trading volume Profitability JKP
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Reference Factor Description Cluster Universe
Chordia et al. (2001) turnover _var_126d Coefficient of variation for share turnover Profitability JKP
Cohen and Lou (2012) retConglomerate Conglomerate return Investment Cz
Cohen et al. (2013) RDADility R&D ability Value CZ
Cooper et al. (2008) at_grl Asset Growth Investment JKP
Cooper et al. (2008) AssetGrowth Asset growth Investment CZ
Corwin and Schultz (2012) bidaskhl 21d The high-low bid-ask spread Low Leverage JKP
Da and Warachka (2011) EarningsForecastDisparity =~ Long-vs-short EPS forecasts Quality CZ
Daniel and Titman (2006) eqnpo_12m Equity net payout Value JKP
Daniel and Titman (2006) CompEqulss Composite equity issuance Value CZ
Daniel and Titman (2006) IntanBM Intangible return using BM Quality CZ
Daniel and Titman (2006) IntanCFP Intangible return using CFtoP Quality CZ
Daniel and Titman (2006) IntanEP Intangible return using EP Quality CZ
Daniel and Titman (2006) IntanSP Intangible return using Sale2P Quality CZ
Daniel and Titman (2006) Sharelss5Y Share issuance (5 year) Investment CZ
Datar et al. (1998) turnover 126d Share turnover Low Risk JKP
De Bondt and Thaler (1985) ret 60 12 Long-term reversal Investment JKP
De Bondt and Thaler (1985) LRreversal Long-run reversal Investment CZ
De Bondt and Thaler (1985) MRreversal Medium-run reversal Quality CZ
Dechow et al. (2001) ShortInterest Short Interest Size CZ
Dechow et al. (2004) eq_dur Equity duration Value JKP
Dechow et al. (2004) EquityDuration Equity Duration Value CZ
Desai et al. (2004) ocf me Operating cash flow-to-market Value JKP
Dichev (1998) o_score Ohlson O-score Profitability JKP
Dichev (1998) z_score Altman Z-score Low Leverage JKP
Diether et al. (2002) ForecastDispersion EPS Forecast Dispersion Low Risk CzZ
Dimson (1979) beta dimson 21d Dimson beta Low Risk JKP
Doyle et al. (2003) ExclExp Excluded Expenses Profitability CZ
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Reference Factor Description Cluster Universe
Eisfeldt and Papanikolaou (2013) OrgCap Organizational capital Low Risk CZ
Elgers et al. (2001) sfe Earnings Forecast to price Value Cz
Fairfield et al. (2003) Inoa_grla Change in long-term net operating assets Investment JKP
Fairfield et al. (2003) GrLTNOA Growth in long term operating assets Quality CzZ
Fama and French (2018) cma Asset growth Investment FF6
Fama and French (2018) hml Book assets-to-market value Value FF6
Fama and French (2018) mkt Value-weighted excess market return Market FF6
Fama and French (2018) rmw Operating profits-to-book equity Profitability FF6
Fama and French (2018) smb Market capitalization Size FF6
Fama and French (2018) umd Price momentum t-12 to t-1 Momentum FF6
Eugene and French (1992) at_be Book leverage Low Leverage JKP
Eugene and French (1992) at_me Assets-to-market Value JKP
Fama and French (2015) ope_be Operating profits-to-book equity Profitability JKP
Eugene and French (1992) BMdec Book to market using December ME Value CZ
Eugene and French (1992) BookLeverage Book leverage (annual) Low Leverage CZ
Fama and French (2006) OperProf operating profits / book equity Profitability CZ
Fama and MacBeth (1973) beta 60m Market Beta Low Risk JKP
Fama and MacBeth (1973) Beta CAPM beta Size CZ
Foster et al. (1984) nig_su Standardized earnings surprise Profit Growth JKP
Foster et al. (1984) EarningsSurprise Earnings Surprise Momentum CZ
Francis et al. (2004) earnings_ variability Earnings variability Low Risk JKP
Francis et al. (2004) ni_arl Earnings persistence Debt Issuance JKP
Francis et al. (2004) ni_ivol Earnings volatility Low Leverage JKP
Frankel and Lee (1998) ival me Intrinsic value-to-market Value JKP
Frankel and Lee (1998) AOP Analyst Optimism Value CZ
Frankel and Lee (1998) AnalystValue Analyst Value Value CZ
Frankel and Lee (1998) PredictedFE Predicted Analyst forecast error Value CZ
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Reference Factor Description Cluster Universe
Franzoni and Marin (2006) FR Pension Funding Status Profitability CZ
Frazzini and Pedersen (2014) betabab 1260d Frazzini-Pedersen market beta Low Risk JKP
George and Hwang (2004) prc_highprc 252d Current price to high price over last year Momentum JKP
Moskowitz and Grinblatt (1999) IndMom Industry Momentum Momentum CZ
Hafzalla et al. (2011) oaccruals_ ni Percent operating accruals Accruals JKP
Hafzalla et al. (2011) taccruals_ ni Percent total accruals Accruals JKP
Hafzalla et al. (2011) PctAcc Percent Operating Accruals Accruals CZ
Hafzalla et al. (2011) PctTotAcc Percent Total Accruals Investment CZ
Hahn and Lee (2009) tangibility Asset tangibility Low Leverage JKP
Hahn and Lee (2009) tang Tangibility Size CZ
Harvey and Siddique (2000) coskew _21d Coskewness Seasonality JKP
Harvey and Siddique (2000) Coskewness Coskewness Value Cz
Haugen and Baker (1996) at_turnover Capital turnover Quality JKP
Haugen and Baker (1996) ni_ be Return on equity Profitability JKP
Haugen and Baker (1996) RoE net income / book equity Profitability CZ
Haugen and Baker (1996) VarCF Cash-flow to price variance Size CZ
Haugen and Baker (1996) VolMkt Volume to market equity Low Risk CZ
Haugen and Baker (1996) VolumeTrend Volume Trend Low Risk CZ
Hawkins et al. (1984) AnalystRevision EPS forecast revision Momentum CZ
Heston and Sadka (2008) seas_11_1ban Years 11-15 lagged returns, annual Seasonality JKP
Heston and Sadka (2008) seas_11 1bna Years 11-15 lagged returns, nonannual Seasonality JKP
Heston and Sadka (2008) seas 16 _20an Years 16-20 lagged returns, annual Seasonality JKP
Heston and Sadka (2008) seas_16_ 20na Years 16-20 lagged returns, nonannual Accruals JKP
Heston and Sadka (2008) seas_1 lan Year 1-lagged return, annual Profit Growth JKP
Heston and Sadka (2008) seas_1_1na Year 1-lagged return, nonannual Momentum JKP
Heston and Sadka (2008) seas 2 ban Years 2-5 lagged returns, annual Seasonality JKP
Heston and Sadka (2008) seas_2 bna Years 2-5 lagged returns, nonannual Investment JKP
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Reference Factor Description Cluster Universe
Heston and Sadka (2008) seas_6_10an Years 6-10 lagged returns, annual Seasonality JKP
Heston and Sadka (2008) seas_6_10na Years 6-10 lagged returns, nonannual Low Risk JKP
Heston and Sadka (2008) Mom12mOffSeason Momentum without the seasonal part Momentum CZ
Heston and Sadka (2008) MomSeason11YrPlus Return seasonality years 11 to 15 Quality CZ
Hirshleifer et al. (2004) noa_ at Net operating assets Debt Issuance JKP
Hirshleifer et al. (2004) noa_grla Change in net operating assets Investment JKP
Hirshleifer et al. (2004) NOA Net Operating Assets Profitability CZ
Hirshleifer et al. (2004) dNoa change in net operating assets Investment CZ
Hou (2007) EarnSupBig Earnings surprise of big firms Profitability CZ
Hou (2007) IndRetBig Industry return of big firms Momentum CZ
Hou and Robinson (2006) Herf Industry concentration (sales) Low Risk CzZ
Hou and Robinson (2006) HerfAsset Industry concentration (assets) Low Risk Cz
Hou and Robinson (2006) HerfBE Industry concentration (equity) Low Risk CZ
Hou et al. (2015) niq be Quarterly return on equity Profitability JKP
Huang (2009) ocfq_saleq_std Cash flow volatility Low Risk JKP
Jegadeesh (1990) ret_ 1 0 Short-term reversal Short-Term Reversal JKP
Jegadeesh and Livnat (2006) saleq_su Standardized Revenue surprise Profit Growth JKP
Jegadeesh and Livnat (2006) RevenueSurprise Revenue Surprise Momentum CZ
Jegadeesh and Titman (1993) ret_12 1 Price momentum t-12 to t-1 Momentum JKP
Jegadeesh and Titman (1993) ret_6_1 Price momentum t-6 to t-1 Momentum JKP
Jegadeesh and Titman (1993) Mom12m Momentum (12 month) Momentum CZ
Jegadeesh et al. (2004) ChangeInRecommendation =~ Change in recommendation Size CZ
Jegadeesh and Titman (1993) ret_3 1 Price momentum t-3 to t-1 Momentum JKP
Jegadeesh and Titman (1993) ret_ 9 1 Price momentum t-9 to t-1 Momentum JKP
Jensen et al. (2023) cop_at Cash-based operating profits-to-book assets Quality JKP
Jensen et al. (2023) gp_atll Gross profits-to-lagged assets Quality JKP
Jensen et al. (2023) iskew _capm_21d Idiosyncratic skewness from the CAPM Short-Term Reversal JKP
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Reference Factor Description Cluster Universe
Jensen et al. (2023) iskew _hxz4 21d Idiosyncratic skewness from the g-factor model Short-Term Reversal JKP
Jensen et al. (2023) ivol capm 21d Idiosyncratic volatility from the CAPM (21 days) Low Risk JKP
Jensen et al. (2023) ivol hxz4 21d Idiosyncratic volatility from the g-factor model Low Risk JKP
Jensen et al. (2023) nig_at_chgl Change in quarterly return on assets Profit Growth JKP
Jensen et al. (2023) niq_be chgl Change in quarterly return on equity Profit Growth JKP
Jensen et al. (2023) op_at Operating profits-to-book assets Quality JKP
Jensen et al. (2023) ope_bell Operating profits-to-lagged book equity Profitability JKP
Jensen et al. (2023) saleq grl Sales growth (1 quarter) Investment JKP
Jiang et al. (2005) age Firm age Low Leverage JKP
Kelly and Jiang (2014) BetaTailRisk Tail risk beta Size CZ
La Porta (1996) fgrbyrLag Long-term EPS forecast Investment CZ
Lakonishok et al. (1994) fcf _me Free cash flow-to-price Value JKP
Lakonishok et al. (1994) sale grl Sales Growth (1 year) Investment JKP
Lakonishok et al. (1994) sale gr3 Sales Growth (3 years) Investment JKP
Lakonishok et al. (1994) CF Cash flow to market Value CZ
Lakonishok et al. (1994) MeanRankRevGrowth Revenue Growth Rank Value CZ
Lamont et al. (2001) kz index Kaplan-Zingales index Seasonality JKP
Landsman et al. (2011) RDS Real dirty surplus Investment CZ
Lev and Nissim (2004) pi_nix Taxable income-to-book income Seasonality JKP
Lev and Nissim (2004) Tax Taxable income to income Investment CZ
Li (2011) rd5_at R&D capital-to-book assets Low Leverage JKP
Litzenberger and Ramaswamy (1979) divl2m_me Dividend yield Value JKP
Liu (2006) zero_trades_126d Number of zero trades with turnover as tiebreaker (6 months) Low Risk JKP
Liu (2006) zero _trades 21d Number of zero trades with turnover as tiebreaker (1 month) Low Risk JKP
Liu (2006) zero_trades_ 252d Number of zero trades with turnover as tiebreaker (12 months) Low Risk JKP
Liu (2006) zerotradeAlt1 Days with zero trades Low Risk Cz
Liu (2006) zerotradeAlt12 Days with zero trades Low Risk CZ
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Reference Factor Description Cluster Universe
Lockwood and Prombutr (2010) ChEQ Growth in book equity Investment Cz
Loh and Warachka (2012) EarningsStreak Earnings surprise streak Quality CZ
Loh and Warachka (2012) NumEarnIncrease Earnings streak length Profitability CZ
Lou (2014) GrAdExp Growth in advertising expenses Investment CZ
Loughran and Wellman (2011) ebitda_mev Ebitda-to-market enterprise value Value JKP
Loughran and Wellman (2011) EntMult Enterprise Multiple Value CZ
Lyandres et al. (2008) debt gr3 Growth in book debt (3 years) Debt Issuance JKP
Lyandres et al. (2008) ppeinv_ grla Change PPE and Inventory Investment JKP
Lyandres et al. (2008) CompositeDebtIssuance Composite debt issuance Value CZ
Lyandres et al. (2008) InvestPPEInv change in ppe and inv/assets Investment CZ
Menzly and Ozbas (2010) iomom__cust Customers momentum Investment CzZ
Menzly and Ozbas (2010) iomom _supp Suppliers momentum Quality CzZ
Miller and Scholes (1982) prc Price per share Size JKP
Nguyen and Swanson (2009) Frontier Efficient frontier index Value Cz
Novy-Marx (2013) gp_at Gross profits-to-assets Quality JKP
Novy-Marx (2011) opex__at Operating leverage Quality JKP
Novy-Marx (2012) ret 12 7 Price momentum t-12 to t-7 Profit Growth JKP
Novy-Marx (2013) GP gross profits / total assets Quality CZ
Novy-Marx (2012) IntMom Intermediate Momentum Profit Growth CZ
Ortiz-Molina and Phillips (2014) aliq_at Liquidity of book assets Investment JKP
Ortiz-Molina and Phillips (2014) aliq_mat Liquidity of market assets Low Leverage JKP
Palazzo (2012) cash _at Cash-to-assets Low Leverage JKP
Pastor and Stambaugh (2003) BetaLiquidityPS Pastor-Stambaugh liquidity beta Accruals CZ
Penman et al. (2007) bev_mev Book-to-market enterprise value Value JKP
Penman et al. (2007) netdebt_me Net debt-to-price Low Leverage JKP
Penman et al. (2007) BPEBM Leverage component of BM Low Risk CZ
Penman et al. (2007) EBM Enterprise component of BM Value CZ
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Reference Factor Description Cluster Universe
Penman et al. (2007) NetDebtPrice Net debt to price Low Leverage CZ
Piotroski (2000) f score Pitroski F-score Profitability JKP
Piotroski (2000) PS Piotroski F-score Profitability CZ
Pontiff and Woodgate (2008) chesho  12m Net stock issues Value JKP
Pontiff and Woodgate (2008) SharelsslY Share issuance (1 year) Value CZ
Prakash and Sinha (2013) DelDRC Deferred Revenue Low Leverage CZ
Rajgopal et al. (2003) OrderBacklog Order backlog Value CZ
Richardson et al. (2005) be grla Change in common equity Investment JKP
Richardson et al. (2005) coa_grla Change in current operating assets Investment JKP
Richardson et al. (2005) col grla Change in current operating liabilities Investment JKP
Richardson et al. (2005) cowc_grla Change in current operating working capital Accruals JKP
Richardson et al. (2005) fnl grla Change in financial liabilities Debt Issuance JKP
Richardson et al. (2005) Iti grla Change in long-term investments Seasonality JKP
Richardson et al. (2005) ncoa_grla Change in noncurrent operating assets Investment JKP
Richardson et al. (2005) ncol grla Change in noncurrent operating liabilities Debt Issuance JKP
Richardson et al. (2005) nfna_grla Change in net financial assets Debt Issuance JKP
Richardson et al. (2005) nncoa_ grla Change in net noncurrent operating assets Investment JKP
Richardson et al. (2005) sti_grla Change in short-term investments Seasonality JKP
Richardson et al. (2005) taccruals_at Total accruals Accruals JKP
Richardson et al. (2005) DelCOA Change in current operating assets Investment CZ
Richardson et al. (2005) DelCOL Change in current operating liabilities Investment CZ
Richardson et al. (2005) DelEqu Change in equity to assets Investment CZ
Richardson et al. (2005) DelFINL Change in financial liabilities Investment CZ
Richardson et al. (2005) DelLTI Change in long-term investment Investment CzZ
Richardson et al. (2005) DelNetFin Change in net financial assets Value Cz
Richardson et al. (2005) TotalAccruals Total accruals Investment CZ
Ritter (1991) AgeIPO IPO and age Value CZ
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Reference Factor Description Cluster Universe
Rosenberg et al. (1985) be me Book-to-market equity Value JKP
Sloan (1996) oaccruals at Operating accruals Accruals JKP
Sloan (1996) Accruals Accruals Quality CZ
Soliman (2008) ebit bev Return on net operating assets Profitability JKP
Soliman (2008) ebit_sale Profit margin Profitability JKP
Soliman (2008) sale bev Assets turnover Quality JKP
Soliman (2008) ChAssetTurnover Change in Asset Turnover Value CZ
Soliman (2008) ChNNCOA Change in Net Noncurrent Op Assets Value CZ
Soliman (2008) ChNWC Change in Net Working Capital Low Risk CZ
Stambaugh and Yuan (2017) mispricing _mgmt Mispricing factor: Management Investment JKP
Stambaugh and Yuan (2017) mispricing perf Mispricing factor: Performance Quality JKP
Stattman (1980) BM Book to market (original definition) Value CZ
Thomas and Zhang (2002) inv_grla Inventory change Investment JKP
Thomas and Zhang (2011) tax_grla Tax expense surprise Profit Growth JKP
Thomas and Zhang (2002) Chlnv Inventory Growth Investment CZ
Thomas and Zhang (2011) ChTax Change in Taxes Quality CZ
Titman et al. (2004) capex_abn Abnormal corporate investment Debt Issuance JKP
Titman et al. (2004) Investment Investment to revenue Investment CZ
Tuzel (2010) realestate Real estate holdings Low Leverage CZ
Xie (2001) capx_grl CAPEX growth (1 year) Investment JKP
Xie (2001) AbnormalAccruals Abnormal Accruals Value CZ




C Empirical results

This appendix evaluates the robustness of the main empirical findings along four complementary
dimensions: (i) the choice of the realized volatility estimator, (i) the length of the estimation
window L € {756,1008,1260}, corresponding to 3, 4 and 5 trading years, (iii) the forecasting
horizon h € {1,5,22} and (iv) the scoring rule (QLIKE and RMSE). Across all configurations,
the model rankings established in the main text persist. Changes in the volatility estimator
mainly shift the level of the loss but not the ordering, while varying L has a negligible effect and
conclusions are consistent under both loss functions. Overall, the robustness checks indicate that
adaptive multi-factor modeling delivers stable gains in statistical accuracy and economic value
across horizons and measurement choices.

Across all panels in Figure 10, the ordering of models is stable. The class of proposed models
dominates, with the three-factor specification closest to the origin (lowest QLIKE). Traditional
benchmarks (HAR, HARQ, SHAR) and simple factor models (HAR-MKT, MFV-CRV, MFV-
PC1) lie farther from the center. The relative distances between models are large compared with
the differences induced by the choice of L, indicating that the estimation window length plays a
second-order role for ranking. Absolute QLIKE levels vary across estimators, as expected, but
the model ordering is invariant.

The formal comparisons in Table 7 corroborate these graphical patterns. Measured by
annualized utility, our model specification outperforms the benchmarks for the vast majority of
stocks across estimators (Panel A), and these gains are frequently statistically significant at the
5% level (Panel B). The outperformance rates typically exceed 90%. Panel C shows that
improvements are economically sizable: in almost every combination of estimator and
benchmark, the utility difference exceeds 1 bp per year for more than 99% of stocks.

Table 8 shows that these conclusions are not specific to the QLIKE loss metric. Under
RMSE, the multi-factor models continue to deliver the lowest errors across quartiles and horizons.
Relative to the baseline HAR, mean RMSE falls by about 8.6% for h = 1 (0.5654 vs. 0.5166),
9.8% for h = 5 (0.6827 vs. 0.6159), and 7.7% for h = 22 (0.7712 vs. 0.7116). The reductions
are mirrored at the median and the quartiles. Performance improves monotonically with the
number of selected factors, and our specifications remain uniformly ahead of the alternatives.
Overall, the evidence indicates that the ranking of models is robust to the volatility estimator,

the estimation window, and the scoring rule.
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Figure 10: Radar plots of cross-sectional average QLIKE losses by volatility estimator (panels) and forecasting model
(vertices). Lower values are closer to the origin. Different colors correspond to estimation window lengths L €
756,1008, 1260, as indicated in the legend. Within each panel the radial axis is scaled to that estimator. The multi-
factor models dominate across all realized specification and estimation windows. Differences across L are small relative to
model gaps, indicating that the ranking is less sensitive to the estimation window length.
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Table 7: Utility-based outperformance of the HAR-1F model against benchmark models, by realized volatility estimator.
Panel A reports Out.perf.,(% of stocks for which the HAR-1F model attains higher annualized utility); Panel B reports
Sig.Out.perf.,(% with the improvement significant at the 5% level via a Diebold-Mariano test); Panel C reports Diff > 1
bp (% with a utility gain of at least 1 basis point per year). Each entry shows the baseline percentage, with the updated
specification in parentheses.

Benchmarks

Volatility estimators HAR HARQ SHAR HAR-MKT MFV-CRV MFV-PC1

Panel A: Out.perf. (%)
RV5 98.9 (1.1) 92.3(7.7) 95.8 (4.2) 98.2 (1.8) 90.4(9.6)  82.4(17.6)
RV5. 98.6 (1.4) 98.1 (1.9) 98.4 (1.6) 98.7(1.3)  88.8(11.2)  98.2(1.8)
RV1 98.8 (1.2) 98.6 (1.4) 96.3 (3.7) 97.7(2.3) 90.9(9.1)  81.6(18.4)
BPV 98.9 (1.1) 99.1(0.9) 96.4 (3.6) 98.8 (1.2) 91.2(8.8) 98.7 (1.3)
BPVitag 99.0 (1.0) 99.0 (1.0) 96.3 (3.7) 98.9(1.1)  89.0(11.0)  98.8(1.2)
RK 99.2 (0.8) 99.3 (0.7) 96.4 (3.6) 99.0 (1.0) 94.9(5.1)  86.2(13.8)
TRV 99.0 (1.0) 99.0 (1.0) 98.6 (1.4) 99.4(0.6)  88.7(11.3)  98.8(1.2)
PRV 99.2(0.8) 98.8(1.2) 94.9 (5.1) 99.2 (0.8) 94.3 (5.7) 99.0 (1.0)
PBV 99.2(0.8) 98.6 (1.4) 94.7 (5.3) 99.3(0.7) 93.9(6.1) 98.9(1.1)
NPDV 99.3 (0.7) 99.2 (0.8) 99.2 (0.8) 95.6(4.4)  89.4(10.6)  99.2(0.8)
DV 96.6 (0.5) 95.5 (0.6) 84.6 (1.5) 89.5 (0.5) 56.4(0.9) 96.0 (1.0)
WV 96.8 (0.9) 88.8 (1.2) 75.2(3.1) 90.9 (0.9) 78.9 (1.1) 53.1(2.3)

Panel B: Sig.Out.perf. (%)
RV5 98.2(0.0) 97.0(0.1) 97.9(0.3) 95.1(0.0) 84.9(0.9) 77.0(0.9)
RV e 97.8(0.0) 97.8(0.1) 97.7(0.3) 95.7 (0.0) 83.0(0.9) 92.6 (0.9)
RV1 97.7(0.0) 97.6 (0.1) 97.0(0.3) 96.7 (0.0) 87.4(1.0) 79.0 (0.9)
BPV 98.1(0.0) 98.2(0.1) 97.3(0.3) 95.3(0.0) 85.8 (0.9) 93.3(0.9)
BPViiag 98.0 (0.0) 98.2(0.1) 97.1(0.3) 95.5 (0.0) 84.8 (0.9) 93.0(0.9)
RK 97.9(0.0) 98.0 (0.1) 97.3(0.3) 95.1(0.0) 87.1(0.9) 78.2(0.9)
TRV 97.6 (0.0) 97.6 (0.1) 96.9 (0.3) 96.2 (0.0) 86.7 (0.9) 92.0(0.9)
PRV 97.9.(0.0) 97.4(0.1) 96.0 (0.3) 93.7 (0.0) 85.3(0.9) 94.0 (0.9)
PBV 97.6 (0.0) 97.0 (0.1) 95.1(0.3) 93.3 (0.0) 85.1(0.9) 93.7 (0.9)
NPDV 99.1(0.0) 99.0 (0.1) 98.4 (0.3) 96.6 (0.0) 93.3 (0.9) 96.8 (0.9)
DV 98.5 (0.0) 98.0 (0.0) 97.0 (0.3) 96.9 (0.0) 87.9(0.9) 93.2 (0.9)
WV 99.2 (0.1) 98.3 (0.1) 96.7 (0.3) 97.7 (0.0) 93.1(0.9) 85.1(0.9)

Panel C: Diff > 1 bp (%)
RV5 99.3 (0.6) 99.9 (1.0) 99.8 (2.0) 99.8 (0.5) 99.9 (0.8) 99.9 (1.4)
RV5, 99.2 (0.6) 99.9 (1.0) 99.8 (2.0) 99.6 (0.5) 99.1(0.8) 99.5 (1.4)
RV1 99.2 (0.6) 99.8 (1.0) 99.8 (2.0) 99.8 (0.5) 99.4 (0.8) 99.7 (1.4)
BPV 99.5 (0.6) 99.8 (1.0) 99.4 (2.0) 99.5 (0.5) 99.4 (0.8) 99.2 (1.4)
BPV.tag 99.4(0.6) 99.8 (1.0) 99.5 (2.0) 99.7 (0.5) 99.6 (0.8) 99.4 (1.4)
RK 99.2(0.6) 99.2(1.0) 99.2(2.0) 99.3(0.5) 99.3(0.8) 99.4 (1.4)
TRV 99.8 (0.6) 99.8 (1.0) 99.8 (2.0) 99.8 (0.5) 99.8 (0.8) 99.7 (1.4)
PRV 99.2 (0.6) 99.2 (1.0) 99.3 (2.0) 99.3 (0.5) 99.4(0.8) 98.9 (1.4)
PBV 99.3 (0.6) 99.0 (1.0) 99.3 (2.0) 99.4(0.5) 99.4(0.8) 99.1 (1.4)
NPDV 99.7 (0.6) 99.6 (1.0) 99.5 (2.0) 99.6 (0.5) 99.8 (0.8) 99.5 (1.4)
DV 99.8 (0.6) 99.8 (1.0) 99.8 (2.0) 99.8 (0.5) 99.6 (0.8) 99.5 (1.4)
WV 99.3 (0.6) 98.3 (1.0) 99.3 (2.0) 99.6 (0.5) 99.6 (0.8) 99.6 (1.4)
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Table 8: Cross-sectional RMSE of volatility forecasts by model and horizon. Entries are the 25th percentile (Q1), mean,
median, and 75th percentile (Q3) across 1041 stocks. Within each row, the lowest value is in bold.

Forecasting models

HAR SHAR HARQ HAR- MFV- MFV- HAR-1F HAR-2F HAR-3F
MKT CRV PC1

Panel A: h=1

Q1 0.2868 0.2945 0.2825 0.3024 0.2709 0.2629 0.2589 0.2538 0.2521
Median 0.4210 0.4158 0.4107 0.4318 0.3898 0.3811 0.3769 0.3722 0.3705
Mean 0.5654 0.5624 0.5564 0.5795 0.5396 0.5311 0.5243 0.5188 0.5166
Q3 0.6218 0.6172 0.6143 0.6407 0.5793 0.5719 0.5709 0.5642 0.5659

Panel B: h=5

Q1 0.3736 0.3759 0.3723 0.3758 0.3577 0.3556 0.3414 0.3313 0.3224
Median 0.5111 0.5104 0.5057 0.5153 0.4854 0.4793 0.4717 0.4578 0.4472
Mean 0.6827 0.6801 0.6777 0.6821 0.6615 0.6578 0.6394 0.6262 0.6159
Q3 0.7546 0.7505 0.7507 0.7525 0.7202 0.7136 0.6968 0.6822 0.6658

Panel C: h =22

Q1 0.4362 0.4362 0.4365 0.4338 0.4349 0.4344 0.4209 0.4088 0.3937
Median 0.5849 0.5833 0.5848 0.5820 0.5816 0.5783 0.5700 0.5538 0.5340
Mean 0.7712 0.7703 0.7707 0.7695 0.7709 0.7699 0.7496 0.7322 0.7116
Q3 0.8596 0.8577 0.8597 0.8541 0.8549 0.8543 0.8329 0.8124 0.7887
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